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Abstract

The purpose of this dissertation is to propose a simple and general approach to solving 

real options problems. Most real options work to this point has been focused on 

complicated and specialized models. The focus here is to make real options modeling 

more robust and accessible. Although real options is the focus of this dissertation, 

many of the contributions are useful for financial modeling as well.

The main application areas are options on observables, which are general variables 

whose value can be observed. Observables can be classified as non-assets, market 

assets, or private assets. Non-assets are variables that are incapable of being traded 

but whose outcome is directly observable. Examples of non-assets include a company’s 

market share, the total world demand for a product, a site’s number of internet hits, 

and a competitor’s decisions. Non-assets with no quantitative value can be given 

arbitrary values (e.g., a loan is either approved(l) or denied(O)). Market assets are 

items of monetary value that have a well-known price and are freely traded in an 

efficient marketplace like The New York Stock Exchange or NASDAQ. They could be 

stocks, bonds, or commodities; or, they could be derivatives of any of those. Private 

assets are items that either are not traded or are infrequently traded so that their 

current market value cannot be directly observed. We will estimate or compute their 

monetary value in this dissertation. The value of private assets may depend on the

iv
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value of other private assets, of non-assets, and of market assets. Examples of private 

assets include private companies, projects, and intangible assets like a brand name.

The contributions of this dissertation supplement the theory and improve the 

lattice techniques used to value real and financial options. More specifically, the 

contributions supplement the theory by handling non-asset underlying variables, by 

including learning effects, and by finding risk-neutral probabilities with new sets of 

information. The contributions also improve the lattice techniques by introducing 

and testing new lattices that are accurate, robust, simple, and able to handle both 

multiple underlying variables and learning effects.

v
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Chapter 1

Introduction

The purpose of this dissertation is to propose a simple and general approach to solving 

real options problems. Most real options work to this point has been focused on 

complicated and specialized models. The focus here is to make real options modeling 

more robust and accessible. Although real options is the focus of this dissertation, 

many of the contributions are useful for financial modeling as well.

This dissertation is intended to be read by academics but can be useful for busi­

ness consultants, analysts, corporate decision makers, and others who are interested 

in building models to sharpen their intuition and make better decisions and valua­

tions. It can also be used by traders, bankers, hedgers, investors, and others who are 

interested in accurately pricing market derivatives.

Real options is a theory that values non-financial investments and gives strategies 

for managing real assets (e.g., when to contract or expand, move or stop, build or 

tear down, speed up or slow down). For examples of real options problems, see 

Amram and Kulatilaka (1999), TVigeorgis (1995), and Dixit and Pindyck (1994); for 

a comprehensive review, see TVigeorgis (1993a) and TVigeorgis (1993b).

1
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The main application areas axe options on observables, which are general variables 

whose value can be observed. Observables can be classified as non-assets, market 

assets, or private assets. Non-assets are variables that are incapable of being traded 

but whose outcome is directly observable. Examples of non-assets include a company’s 

market share, the total world demand for a product, a site’s number of internet hits, 

and a competitor’s decisions. Non-assets with no quantitative value can be given 

arbitrary values (e.g., a loan is either approved(l) or denied(O)). Market assets are 

items of monetary value that have a well-known price and are freely traded in an 

efficient marketplace like The New York Stock Exchange or NASDAQ. They could be 

stocks, bonds, or commodities; or, they could be derivatives of any of those. Private 

assets are items that either are not traded or are infrequently traded so that their 

current market value cannot be directly observed. We will estimate or compute their 

monetary value in this dissertation. The value of private assets may depend on the 

value of other private assets, of non-assets, and of market assets. Examples of private 

assets include private companies, projects, and intangible assets like a brand name.

Building real options models improves intuition, and the resulting strategies and 

valuations closely match that intuition. But the models are not robust enough to 

handle the variable growth rates and volatilities that occur outside the market. For 

example, growth rates of underlying observables may be expected to be exceptionally 

high for the next year or so but then drop off dramatically. In addition, we do not 

know how to handle options on non-assets.

The numerical techniques have limited usefulness as well. Multiple lattices are 

complex and Monte Carlo Simulation must have the strategy known in advance. 

Unfortunately, most projects contain several underlying observables (e.g., fixed costs,
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market share, and market size), and the optimal strategy is almost never known in 

advance.

To further complicate matters, more detailed forecasting is required because ob­

servables do not have implied volatilities and because the expected growth rate of 

non-assets will not necessarily be the same as that of similar-CAPM-Beta market 

assets. Growth rates, volatilities, and other parameters that most business experts 

are not comfortable with must be estimated. In addition, the optimal strategies and 

option valuations are usually sensitive to these parameters. To aid these expert fore­

casts, we will study historical data like past stock behavior. In many cases, however, 

data are difficult to obtain, and there are not enough to ensure a good forecast. 

Therefore, the judgment of the expert is paramount.

Most experts understand that their predictions are not perfect, and that if future 

results are not consistent with their predictions, they will alter those predictions. In 

other words, an expert cannot say with certainty what an expected growth rate or 

volatility will be, but instead can offer a probability distribution of these parameters. 

Then, as future results unfold, the expert becomes more certain of the appropriate 

parameters.

1.1 Contributions

The contributions of this dissertation supplement the theory and improve the lattice 

techniques used to value real and financial options. More specifically, the contribu­

tions supplement the theory by handling non-asset underlying variables, by including 

learning effects, and by finding risk-neutral probabilities with new sets of information. 

The contributions also improve the lattice techniques by introducing and testing new
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lattices that are accurate, robust, simple, and able to handle both multiple underlying 

variables and learning effects.

Contribution 1 (Non-Assets). We are able to include non-assets that are corre­

lated with the Market portfolio in discrete or continuous time into our models. We 

construct a pricing theory that writes risk-neutral pricing solutions simply in both 

discrete (see sec. 2.1) and continuous time (see sec. 3.1 and sec. 3.3) for all observ­

ables (including non-assets). In discrete-time models, we can use non-assets (including 

those with no known value today) to find the risk-neutral probabilities (see sec. 2.4.2). 

In continuous-time models, we may need to transform underlying variables so that 

they follow geometric Brownian motion.

Contribution 2 (Layered M odels). If we have an observable that has a contin­

uous distribution or more outcomes than our model has states, we are able to find 

the risk-neutral expectations of the observable conditional on the state of the model 

(see sec. 2.2). Using information from these observables, we can find the risk-neutral 

probabilities (see sec. 2.4.2).

Contribution 3 (Closely-Correlated A ssets). We can find the risk-neutral ex­

pectation of an observable by using information about a closely-correlated asset to 

the observable instead of the Market portfolio (see sec. 2.3). This method can add 

accuracy to our estimations of the risk-neutral probabilities (see sec. 2.4.2). We can 

also find the risk-neutral growth rate of an observable by using information about a 

closely-correlated asset (see sec. 3.2).

Contribution 4  (Market Portfolio M ethod). We add flexibility by introducing 

a new method that allows us to find the risk-neutral probabilities with just information 

about the Market portfolio (see sec. 2.4.1).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 1. INTRODUCTION 5

C on tribu tion  5 (Learning). We find optimal strategies and valuations on mod­

els that include learning about the distribution of recurring event probabilities (see 

sec. 2.5), about the distribution of growth rates and volatilities of a continuous-time 

observable when we only observe its value periodically (see sec. 3.4), and about more 

general variables like the time to complete a project (see sec. 3.5). We assume that 

the distribution of the growth rates, volatilities, and recurring event probabilities are 

constant over time and use Bayesian Theory to update our beliefs about these para­

meters. For example, we make a prior distribution from expert opinion and historical 

data and then update that distribution as we observe data.

C on tribu tion  6 (L attice  Tests and  Com parisons). We test lattices over a com­

prehensive real options region (see sec. 4.4), and we compare the lattices by their 

simplicity, accuracy, and robustness (see sec. 4.1). The testing shows that the Cox, 

Ross, and Rubinstein(CRR) Lattice is inaccurate and that the best absolute expected 

growth rate to use with the CRR Lattice is 5%; the comparisons provide a good argu­

ment for the use of the binomial log-transform lattice(BI) (an approximation of risk- 

neutral geometric Brownian motion) and the trinomial log-transform lattice(TRI) 

(see sec. 4.2.4). The BI and TRI are always stable, have superior accuracy, and have 

unparalleled simplicity even with several underlying variables (see sec. 4.2.1). The 

TRI is used when we need greater range than the BI.

C on tribu tion  7 (N ew  Single L attices). We construct new lattice types by ap­

proximating risk-neutral pricing solutions with moment-matching methods. Several 

of these lattice types prove to have binomial approximations that are significantly 

superior to the CRR Model. We make lattices by approximating four different mod­

els: the Log-TVansform Model; the Multiplicative Model (an altered version of the
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Log-Transform Model); the Alternative Log-Transform Model (similar to the Log- 

Transform Model but the risk-neutral expected growth rate is matched); and the 

Lognormal Model (same model that Tian (1993) approximated) (see sec. 4.3). We 

approximate the Log-Transform Model by using three different forms of moment- 

matching: pure (same as Omberg (1988)); equal-spacing (similar to Omberg (1988)’s 

equal-spacing lattices except that we set the spacing so that the first unmatched mo­

ment is as close as possible to being matched) (see sec. 4.2.2); and equal-spacing and 

equal-probability (see sec. 4.2.3).

Contribution 8 (N ew  Multiple Lattices). We construct new, simple multiple lat­

tices. By putting two BI lattices together, we create a simple double lattice that is 

always stable (see sec. 5.1.1). By putting three or four BI lattices together, we create 

effective multiple lattices that are simple to understand (see sec. 5.1.2).

Contribution 9 (Flexible Double Lattices). We make new double lattices out of 

combinations of the BI and trinomial lattices. Depending on the importance of each 

variable, the correlation between variables, and the needed range, we tailor the lattice 

for the particular problem and achieve a higher degree of accuracy (see sec. 5.1.3). 

Although these lattices are not as simple as others, they allow the flexibility to increase 

accuracy when one variable is more important than the other or when a larger than 

normal range is needed.

Contribution 10 (Unconditionally Stable M ultiple Lattices). We build new 

multiple lattices that are unconditionally stable and consistently accurate for even a 

large number of underlying variables. We make Ekvall (1996)’s transformation and 

then form a lattice out of combinations of BI and trinomial lattices (see sec. 5.2 and
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sec. 5.4). Alternatively, we build a factor model and form a multiple lattice out of 

the factors (see sec. 5.3).

1.2 Future Research

With the contributions of this dissertation, learning effects are modeled, an observable 

with nearly any distribution is handled just as efficiently as a market asset, and we 

have simple, effective, lattice techniques. There are still several areas of research that 

could improve real options theory, however. In particular, future research should 

attempt to:

Remove A ssum ptions. The problems we attempt to model are complex, and many 

of our assumptions are unrealistic. We assume that we can hedge or sell un­

wanted risks; but hedging and selling are difficult, inefficient, and complex 

processes. In addition, observation and transaction costs are nontrivial.

D eterm ine ap p ro p ria te  uses for real options m odels. Real options modeling 

is directly applicable to projects in large companies in three ways. The first 

consists of very small projects that are independent of, and have little affect on, 

surrounding areas of the business. The second is when used to produce a large 

overview of the entire business, considering restructuring costs, bankruptcy, 

synergies, and other factors that lead to risk-aversion. The third requires an 

overseer who decides how to break up, merge, buy, and sell divisions that each 

make decisions independently. Within a private company, we must be careful 

when considering using real options models because the owners generally prefer 

that the company act in a risk-averse manner.
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Find ways o f m odeling non-specific d is tan t opportun ities. Kasanen (1993) sug­

gests that corporations should seek investments that could spawn other oppor­

tunities.

Continue im proving th e  lattice  techniques. Although several lattice types are 

presented in this dissertation, there are many others that can be built and 

tested. More specifically, research should focus on testing multiple lattices and 

on discovering particularly effective lattices to use for specific classes or types 

of options.

F ind lattice  techniques for m ore general strategies. Lattice methods for con­

trollable underlying variables and path-dependent options should be researched.

1.3 Organization

Here is the organization of the remaining chapters:

C hap ter 2 explores discrete-time models. It shows how to find the risk-neutral 

expectations of observables, even if we do not know the current value of the 

observable, and even if the observable has continuous, negative, or more possible 

outcomes than the model has states. To add flexibility in our method of finding 

the risk-neutral expectation of an observable, we present a method of finding 

this risk-neutral expectation with information about a closely-correlated asset 

instead of information about the Market portfolio. The risk-neutral probabilities 

are found with information or conditional information from the Market portfolio 

or observables. We present an example of pricing with stochastic discount rates 

and of an observable modeling a binary event. To model learning about the
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distribution of probabilities, we use a beta distribution in an example with two 

periods, an example with 104 periods (using a special lattice type), and an 

example with an infinite number of periods.

C hap te r 3 explores continuous-time models. We see how to adjust the expected 

growth rate of observables so that the observables fit into our risk-neutral frame­

work. To add flexibility in our method of finding the risk-neutral growth rate of 

an observable, we show a method of finding this risk-neutral growth rate with 

information about a closely-correlated asset instead of information about the 

Market portfolio. We model learning about the growth rate or volatility of an 

observable when we only observe its value periodically. We show how to build 

a lattice when we learn about the growth rate. Finally, we study an applica­

tion of learning in phases and of valuing an acquisition target that will allow a 

larger company to develop a new product. If the company buys the target and 

begins to develop the product, the non-intuitive optimal strategy suggests that, 

in many cases, the company should abandon the project before completion.

C h ap te r 4 develops, compares, and tests lattice methods. Lattices built from vari­

ous continuous-time models and approximation methods are compared by their 

stability, simplicity, and accuracy. We approximate the Log-Transform Model 

with three moment-matching methods: pure; equal-spacing; and equal-spacing 

and equal-probability. We then review the CRR Model and present three other 

risk-neutral continuous-time models, which we also approximate with moment- 

matching methods. Finally, we test the lattices on 320 American options with 

parameters covering a comprehensive real options region. To determine the 

accuracy of the lattices, we calculate statistics of errors and percentage errors.
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C h ap te r 5 covers multiple lattices. We use the BI to construct multiple lattices like 

the Double Binomial Lattice, the TViple Binomial Lattice, and the Quadruple 

Binomial Lattice. We then construct other double lattices out of lattice types 

like the Log-TVansform Trinomial. To easily form lattices that contain a large 

number of underlying variables, we construct new lattices from the transforma­

tion of Ekvall (1996) and from a factor model. Finally, we see an application of 

valuing a lease in continuous time that contains multiple non-assets.
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Chapter 2

Discrete-Tim e Pricing

The Capital Asset Pricing Model (CAPM) shows a relationship between market as­

sets. To build the CAPM, we define the return, Rs, of any market asset, 5, over 

time period t to t + I as Rs = S (t + 1)/S(t), where S(t) is the value of S  at time 

t. We assume the market is efficient (i.e., there are no transaction costs, all investors 

have the same opportunities and information, no single person or company can sig­

nificantly affect the Market portfolio with its actions, and no arbitrage opportunity 

exists) and that investors are strictly variance averse. We also assume that there 

exists a Zero-Coupon Treasury bond, B , a special market asset that has a guaranteed 

single fixed payoff B (t +  1) =  RfB(t) ,  where Rf  is the risk-free return. The CAPM 

states that the expected return, E(Rs),  of a market asset S  must satisfy

E(Rs) -  R f  =  ftts ,jtM[E(iiM) — Rf\  (2.1)

11
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where

0Rs'R“ var (Ru )
COv(Rs , R M)

(2.2)

is the CAPM Beta of S  (which we also refer to as the Beta of Rs and Rm ), and 

M  is the Market portfolio. Notice that the expected return of any market asset is 

determined solely by the covariance of the return of the Market portfolio and the 

return of the market asset. We can add dividends and net convenience yield to the 

expected return with only trivial changes to the analysis (see, e.g., Hull (1993, p. 68)). 

The net convenience yield of private assets is usually called rate-of-retum shortfall. 

See Paddock, Siegel, and Smith (1988); Brennan and Schwartz (1985); McDonald 

and Siegel (1985); and McDonald and Siegel (1984) for examples of rate-of-retum 

shortfall.

To price in models with L  states, suppose there exists normalized state prices 

<Ii =  ipi/ipo (see, e.g., Luenberger (1998a, pp. 248-51) and Huang and Litzenberger 

(1988, p. 124)), where ipo =  i>i* We see that ip0 must equal 1 /R f  by noting that 

the return of a bond over time period 0 to 1 is the same in every state and

The <7j’s sum to one and each of them is greater than zero just like a set of probabilities. 

The price of any market asset S  with price Si in state i  and price So today is

(2.3)
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where E(S) is the expectation of S  under these artificial, risk-neutral, probabilities. 

Rearranging (2.3), we see that

E {Rg) =  Rf  (2.4)

for all market assets.

To solve for the risk-neutral probabilities, we need information about a number 

of market assets - the same number as the number of states (see, e.g., Duffie (1988, 

pp. 67-8) and Huang and Litzenberger (1988, p. 124)). We assume that markets are 

complete. Along with the no arbitrage assumption, this means that the risk-neutral 

probabilities exist and are unique.

2.1 Risk-Neutral Expectations

We assume that in the next period, there are L states of the model, and that an 

observable Z (e.g., world demand for microprocessors or a stock price) has value Z q 

today, expected value E(Z) in the next period, and value Z, in state i  in the next 

period. State i will occur with probability p^  where Y*t=iPi = *•

Theorem 2.1. For an observable Z with Zi > 0 for each state i and Z q > 0,

E (Rz ) -  E(Rz ) =  (3Rz,Rm\E(Rm) -  Rf ], (2.5)

where 0Rz,Ru is the CAPM Beta of Z ,E  is risk-neutral expectation, Rm is the return 

of the Market portfolio, and Rf  is the risk-free return.

Proof. Take a non-dividend paying asset S  with Z* =  5* > 0 for every state i  and
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Z q A z  — S o ,  where Az is a constant (since markets are complete, we can always find 

an S  such that S i  =  Z< for every state i ) .  We then know that ( 3 r z , r m  —  P r s ,r m A z , 

E(i?z) =  E(i?5)Az, and

E ( R z )  —  E(/2s)Az =  R / A z -

Substitution of 0 r z ,r m , E(/?z), and E( R z ) into the CAPM (2.1) gives us

E ( R z )  E( R z ) P r z . R m  , T ? f D  \ d i
— z ------- X T  = “ aJ” 1 ( w)'  * /]’

and multiplying both sides by Az  gives us the desired result. □

Theorem  2.2. For any observable Z,

E(Z) -  E(Z) =  Pz,Ru  [E(Am) -  Rf]- (2.6)

Proof. Multiply both sides of (2.5) by Z q. To see that (2.6) holds for any Z, notice 

that (2.6) does not contain the value of Z q and is unchanged by the transformation,

Z  •-> Z  +  C, where C  is a constant. □

Example 2.1 (European Call Option on an Observable). Price a European call 

option C  that expires next period and that pays Z  dollars if exercised, where Z  is an 

observable with Z* > 0 for every state i .
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The price of C  is

Co =  -^-E[max(Z,0)l =  i -E (Z )
K f  i t f

=  ^ - { E ( Z ) - ^ , r„ [ E ( E „ ) - R / ]}.
R f

Note that if Z is an asset, the value of CQ is simply Z0.

2.2 Layered Models

Suppose we want to build a model with L states but we have an observable that is more 

conveniently or realistically modeled with more than L  states (e.g., a lognormally- 

distributed stock price or Market portfolio), we can still use this observable to help find 

the risk-neutral probabilities of our L states. An observable Z that is initially modeled 

with more than L states has a risk-neutral expectation conditional on arriving in state 

i, E(Zj), that is found using the following corollary to theorem 2.2:

Corollary. For any observable Z  and any state i,

EfZ,) -  E(Zi) =  |E(EMl) -  * ,], (2.7)

where var(Zj) is the conditional variance of Z, E(Zt) is the conditional expected value 

of Z , and Pzi,RUi the conditional Beta of Z  and the return of the Market portfolio.

Theorem 2.3. For any observable Z ,

L
E(Z) =  Y .  {E(Z') -  -  * /l}  <*> (2-8)

i=l
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where qi is the risk-neutral probability of arriving in state i.

Proof.

L
E(Z) =  5 ^ E (Z ()®. (2.9)

1=1

Substituting (2.7) into (2.9) gives vis the desired result. □

2.3 Closely-Correlated Asset

In practice, it is often more difficult to accurately estimate the CAPM Beta, Prz<r u , 

of an observable Z and the parameters of the Market portfolio than to estimate the 

correlation between Z and a closely-correlated asset S  and the parameters of S  (see 

Luenberger (2000) for the accuracy advantages of these estimations). For example, 

imagine that Z is the number of computer processors sold in the world in one month 

and that S  is the stock price of a major processor manufacturer.

T heorem  2.4. For an observable Z with Z, > 0 for each state i and Z0 > 0, and an 

asset S,

E(fiz ) -  E{ R z ) =  ^ " - [ E ( f l s ) _  f i / |. {2.io)
HRs,Rm

Proof. Substituting E(Rm ) — Rf  of (2.5) into the CAPM (2.1) gives us the desired 

result. □

By estimating the correlation between Z and S, pz,s> and by assuming that the 

rest of the uncertainty in Z  is uncorrelated with M  (i.e., pz,M — P z , s P s , m )  Lu­

enberger (1999) for justification of this assumption), we get the following corollary to
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theorem 2.4:

Corollary. For an observable Z with Z* > 0 for each state i and Z0 > 0, and an 

asset S  where p z ,M  = P z ,sP s ,m >

E {Rm) -  E (Rz ) =  Prz ,rs [E(Rs ) -  Rf ). ( 2 . 1 1 )

2.4 Risk-Neutral Probabilities

We present two major methods for finding the risk-neutral probabilities: the Market 

Portfolio Method; and the Observable Method. The method we choose depends on the 

information available to us. The Market Portfolio Method needs the expected value 

of the Market portfolio conditional on arriving in each state and the probability of 

arriving in each state, p». The Observable Method needs the same number of linearly 

independent observables as states. The Market Portfolio Method can be particularly 

useful when there are a large number of states since we only need information about 

one observable regardless of the number of states. The Observable Method is useful 

when we cannot use the Market Portfolio Method or when we can more accurately 

estimate the risk-neutral probabilities by using observables with closely-correlated 

assets than by using the Market Portfolio Method.

2.4.1 Market Portfolio Method 

Theorem  2.5. For each state i,

_ _ f ,  . [E(fl„) -  E(fi„J][E(fl„) -  fl/] 1
* " PT +  / '  (212)
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Proof. Take an asset S  with value Si =  1 in state i and Sj =  0 for all j  ^  i. Then we 

see that

COv(S, R„) E(SR m) -  E(S)E(fi„) _  Pi[E(* „ ,)  -  E(flM)l
™S’R“ var(fl„)5„ var(fi«)Sc var(ftM)S0 ' 1 ' '

Substitution of (2.13a), (2.13b), and (2.13c) into the CAPM (2.1) and multiplying

E xam ple 2.2 (R isk-N eutral P robabilities Using th e  M arket Portfolio). In a

four-state model, the Market portfolio has value 3 today and expected value 5 in state 

one, 4 in state two, 3 in state three, and 2 in state four. The probability of arriving 

in state one is .4, in state two is .3, in state three is .2, and in state four is .1. Assume 

the variance of the Market portfolio is 38 and the risk-free return is 1.05. Find the 

risk-neutral probabilities, ft.

We find that the expectation of the Market portfolio is 4, and then use (2.12) to 

find ft =  .391, ft =  -3, f t  =  .2045, and f t  =  .1045.

2.4.2 Observable Method

Suppose we have a risk-free bond and at least L — 1 other observables, where L is 

the number of states in the model. To find the risk-neutral probabilities, ft, we solve

(2.13b)

(2.13a)

and

both sides by So gives us the desired result. □
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a set of L equations consisting of 9* =  1 and L — 1 of the ten equation types 

listed below (Q -l to Q-10). If we know the exact value of Z  in each state, we use 

equation types Q -l to Q-5, which are derived from (2.4), (2.5), (2.6), and (2.11). If 

Z has more possible outcomes than the model has states, we use equation types Q-6  

to Q-10, which are derived from (2.7), (2.8), and (2.11).

Q - l  For any asset S  with Rs{ known for each state i:

L

5 ~2*RSi = Rf • (2-14)
i=l

Q -2 For any observable Z  with Z» > 0 known for each state i and Z0 > 0, and any 

asset S  where p z ,M  =  P z , s P s , m :

l
=  E ( f l z )  -  f e t S s [ E ( f l s )  -  R ,\.

i=  1

Q -3 For any observable Z  with Z* known for each state i, and any asset S  where 

P z ,m  =  P z , s P s ,m -

L

I>Z< = E(Z) -& ,Rs[E(iis) -  R.,).
i= 1

Q -4  For any observable Z  with Z, > 0 known for each state i and Z q > 0:

L

T . QiRzt =  E (Rz ) -  PRZ'Rm[E(Rm ) -  Rf ].
i=  1
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Q -5  For any observable 2  with 2* known for each state i:

L

^j^qiZi =  E(2) — Pz,rm[E(Rm ) — Rf]. (2.15)
t=i

Q -6  For any asset S:

L
-  / ^ . ^ J E ^ a / , )  -  fy]} = Rf- (2-16)

1=1

Q -7  For any observable Z  with 2* > 0 for each state i and 20 > 0, and any asset S  

where pz,M = Pz,sPs,m-

L

£ * { E ( f l z , )  -/9R2,.»»,[E(fla ) -  K,]} =  E(Rz)  -  i3Rz,as[ W s )  -  * /].
i = l

Q -8  For any observable 2  and asset S  where pz,M =  P z , s P s , m :

X >  {E(z <> -  &.•** P t S s )  - * / ] } =  E(z ) -  A a [E(«») -  */]•
1=1

Q -9  For any observable 2  with 2 t > 0 for each state i  and 20 > 0:

L

52<7*{E(.Rz<) -  PRzi.RujEiR-Mi) — fy ]}  =  E(/?z) -  Prz<r m[E(Rm) -  Rf]. 
1=1

Q -10  For any observable 2 :

L

£ >  { E<z .) -  -  f l, |}  =  E(Z) -  p z .n J W u )  -  R,\.
1=1
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Example 2.3 (Simple Pricing). In a two-state model, an asset C  pays 1 in state

in state two. Assume the risk-free return, Rf, is 1.05. Find the current price of C. 

First we solve for the risk-neutral probabilities, qit using Q -l (2.14):

3<?i +92 D 
2 '

9i +  92 =  1-

Solving these two equations gives us q\ =  .55 and 92 =  .45. To find the price of C, 

we use (2.3):

Example 2.4 (Using an Observable). In a two-state model, assume an observ­

able Z  will be 3 in state one, 1 in state two, and has a correlation with the return of 

the Market portfolio of .5. The variance of the return of the Market portfolio is 0.09 

and the expectation is 1.15. Assume the probability of arriving in each state is 1/2 

and the risk-free return is 1.05. Find the risk-neutral probabilities, 9*.

We first find that the variance of the value of Z  in the next period is 1 so that we 

can use Q-5(2.15):

1139i +  92 =  -g- 

91 +  92 =  1.

Solving these two equations gives us 91 =  5/12 and 92 =  7/12.

one and 2 in state two. A stock S  has price 2 today and will be 3 in state one and 1
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Exam ple 2.5 (S tochastic  D iscount R ates). In a two-state model, the current 

one-period risk-free return, R f , is 1.05. At the end of the first period, the next 

one-period risk-free return will be 1.03 in state one or 1.07 in state two. The proba­

bility of arriving in each state is 1/2. The current price of a two-period zero-coupon 

Treasury bond B  is 90. Find the risk-neutral probabilities, qx and q2.

First note that the price of the bond in state one is B\ =  100/1.03 and the price 

in state two is f?2 =  100/1.07. We solve for qx and by using Q-l(2.14):

Bxqi +  £?2<72 =  B0R f 

9i +  92 =  i;

and get qx =  .287 and q-2 =  .713.

Exam ple 2.6 (C ontinuous-V ariable Observable). In a two-state model layered 

within an infinite-state model, a stock price S  is currently 2 and has a lognormal 

distribution in the next period with expectation in state one of 3 and expectation 

in state two of 1. The Market portfolio is also lognormally-distributed, and the 

covariance of the stock price with the Market portfolio is 1 in state one and 0.25 in 

state 2. The expected return of the Market portfolio is 1.2 in state one and 1.0 in state 

two. The variance of the return of the Market portfolio is 0.2 in state one and 0.06 in 

state two. Assume the risk-free return is 1.05. Find the risk-neutral probabilities, qx.

We use Q-6(2.16):

34'-i5>91 + 92 — SoRf 

9i +92 =  I-
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We find qi = .856 and <72 =  144.

Example 2.7 (Arbitrary Observable as an Event). Assume Z  is a  binary event 

(e.g., a possible loan approval) with probability p of a positive outcome. Arbitrarily 

assign the value 1 to a positive outcome and the value 0 to a negative outcome. The 

correlation between Z  and the Market portfolio is .4, the variance of the return of the 

Market portfolio is 0.09, and the expectation of the return of the Market portfolio is 

1.15. Assume the risk-free return is 1.05. Find the risk-neutral probability, q.

First find the variance of Z : var(Z) =  p — p2; and then use Q-5(2.15) to find

2.5 Learning

If we do not know the parameters of the underlying observables in our model, we use 

a Bayesian framework to incorporate the aspects of learning that take place over time. 

We have multiple time periods t  =  0 ,. . .  , T. Let C„m(t) be the value of an asset at 

time t with current strategy 7rm. The payoff of the asset at time t is a  function Gt 

of our current strategy and N  different observables with values Z i( t ) , . . .  , Z s(t)  at 

time t. We can switch from strategy %m to strategy tt, with a fixed cost of S (rm, 7r,-)
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at time t. The value of the asset is

0 for t =  T

for t =  0, . , T -  1. 

(2.17)

To model learning about the uncertainty surrounding the probability distribution 

of a recurring event with two states, we use a beta(o;1) a 2) distribution (see, e.g., 

Gelman, Carlin, Stern, and Rubin (1995, p. 481) and Law and Kelton (nd, pp. 338-9). 

The beta distribution has density function of the probability of event one occuring:

/(*) =
xai-^l-xjaa-1 if 0 < X < 1 

/o ‘“ l_ 1 ( l - 0 o a _ ld‘

0 otherwise

and expected probability of event one:

E  (p x )  =
a  i

Q!l +  Q!2

Furthermore, it can be shown that if we take a sample zt from Z{t) ~  b e ta (a i,a2) 

and Zt = 1, then the distribution of Z(t +  1) is

[Z(t + 1 ) | zt = l] ~  beta(ai + 1, ar2).
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Table 2.1: Conditional Expected Values
Period 1 E[Mi(2)] E[M2(2)] E[Ms(2)]
State One 
State Two 
State Three

[7Mi(l)]/6
[3Ma(l)]/2
[5Ma(l)]/3

Mx{ 1) 
M2{ 1) 
Afc(l)

[5A/i(l)]/6
[3M2(l)]/4
[5M3(l)]/6

For L states, we use the notation, b e ta (a i,... ,a /J .  This distribution has ex­

pected probability of event j ,

E to )  =  ^ r L-

E xam ple 2.8 (R isk-N eutral Learning). In a three-state, two-period model, as­

sume the current value of the Market portfolio, M, is 4; the expected value of M  

conditional on arriving in state one is 6; the conditional expected value of M  in state 

two is 4; and the conditional expected value of M  in state three is 3. In addition, 

table 2.1 shows the expected values of the Market portfolio in period two conditional 

on the state of period one and period two. Find the risk-neutral probabilities of the 

first two periods, <fc(0) and <fc(l), given we have a beta(l, 1, 1) distribution of the state 

probabilities, pt(0).

The probability of any of the three states occuring in period one is 1/3. If state 

i occurs, then the probability of state i occuring again in period two is 1/2 and the 

probability of any other state occuring in period two is 1/4. By using (2.12), we find 

that the risk-neutral probabilities for period one are <71 (0) =  .286, g2(0) =  .343, and 

93(0) =  .371. The risk-neutral probabilities for period two are solved similarly and 

are shown in table 2.2.
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Table 2.2: Risk-Neutral Probabilities
Period 1 9i(l) 92(1) 93(1)
State One .527 .246 .227
State Two .232 .505 .263
State Three .209 .256 .535

Exam ple 2.9 (Two Y ears o f Learning). Suppose a bank has the opportunity to 

offer a new type of $1 million short-term loan that could either pay $2 million or $0 in 

one week. We believe that the probability of success is uniformly distributed between 

0 and 1, is uncorrelated with the Market portfolio, and is constant over time. We 

have the same opportunity once per week for the next two years. The risk-free return 

over one week is 1.0047.

First, note that a Uniform distribution U(0,1) is equivalent to a beta(l,l) distrib­

ution. Let C(ai,at2 ,t) represent the value of the option at time t with the belief that 

the probability of success has a beta(ai,a2) distribution. From (2.17),

r

0 for t =  T

C {ai,a2,t) = < max|_ ^ L _ [ $ 2 M  +  C (a1 +  l , a 2, t  +  l)]

, a* +  M  +  1) -  SIM, o} for t =  0, . . .  , T  -  1

For this example, it is necessary to build a lattice with changing probabilities similar 

to that in figure 2.1. If we take a myopic view and consider only the value of the first 

loan, we do not give the loan since it has an expected value of 0. If we consider the 

effects of learning, however, we will take on a more aggressive strategy and find the
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Figure 2.1: A uniform lattice.

value of the option to be $23.02 million. The optimal strategy for the first twenty 

loans is shown in figure 2.2. Notice that we are willing to accept several unsuccessful 

outcomes before abandoning the new type of loan in hopes that we are just having 

bad luck.

To show further the effects of learning, we solve for the value of the option again, 

this time using a beta(50,50) distribution (see fig. 2.3), which also has E(pi) =  .5. 

The value is only $1.81 million because of the reduced learning effect. Figure 2.4 

shows the optimal strategy for the first twenty loans. We are willing to continue even 

longer because we believe that p\ does not fall far from one-half.

Example 2.10 (Infinite Horizon Learning). Suppose that a bank has a division 

that offers only one particular type of loan. The loan either pays Pi or P% in each pe­

riod. Suppose also that we believe the probabilities of the payoffs have a beta(c*i, a2) 

distribution, are uncorrelated with the Market portfolio, and are constant over time. 

The bank has the option to sell the division at any time for 5 . The risk-free return 

is R f . We want to solve for the value of the division at time t, C{a\,ct2 ,t).
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Learning Strategy with Beta(1,1) Prior

m

■  Myopic 

□  Optimal

Myopic $0 
Optimal S23.02M

Trials

Figure 2.2: The beta(l,l) strategy.

B e ta (5 0 ,5 0 )  CDF

r e a r  probability

0.8

0.4

o o o a

Figure 2.3: The beta(50,50) CDF.
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Learning Strategy with Beta(50,50) 
Prior

uu3<f>

■  Myopic 

□  Optimal

O  <N

Myopic SO 
Optimal S1.81M

Trials

Figure 2.4: The beta(50,50) strategy.

From (2.17),

C(ax, Q!2, t) =  max +  (7(0:! +  1, a 2, t +  1)]

where A  = a i  +  a 2. For infinite horizon problems, as A  approaches infinity, we know 

the real probabilities and write

C(atii<^2iO =  naax ^ [ P i  -f-C (ai,a2, t +  1)] +  —|  [fi* +  C (a i ,a 2,t  +  l ) ] ,« s |,

which can then be rewritten

Pi£*i +  P2o:2
C (a i,a 2,t) =  max

L M R r  - 1)
for R f > 1 and A  »  0.
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To approximate the optimal stopping strategy and value of the option, start from 

a large A  and many possible real probabilities and work backwards using dynamic 

programming.
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Continuous-Time Pricing

Financial Economic theory usually assumes market assets follow a Markov process, 

which is a special stochastic process in which only the present value of the variable 

is relevant for predicting the future. Markov processes are consistent with the weak 

form of market efficiency, which occurs because of rational competition. In real­

ity, the prices of market assets do not move randomly, but instead move because of 

trades made by investors. To an outsider looking at the prices with no other infor­

mation, however, the prices appear to move randomly. Empirically, the logarithms 

of stock prices closely follow a Normal price distribution. The most common model 

for these asset price processes is geometric Brownian motion, which is a lognormally- 

distributed, continuous-time, continuous-variable, Markov process (see, e.g., Oksendal 

(1995, pp. 9-12) and Duffie (1988, p. 231)). For a market asset S, this process takes 

the form

d ln(S) =  i/sdt +  crsdBs, (3.1)

31
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or the equivalent form

dS  =  Sdt +  as SdBs , (3.2)

where Bs is the Brownian motion of S, vs is the expected growth rate of S  and as is 

the volatility of S . We can add dividends and net convenience yield to the expected 

growth rate with only trivial changes to the analysis.

We assume that the Market portfolio follows the process

dln(M) =  uMdt -F crMdBjv/.

This is consistent with both the log-optimal portfolio (see Luenberger (1998a, p. 432)) 

and the continuously-rebalanced optimal Markowitz portfolio (see, e.g., Luenberger 

(1998a, p. 433)). To find the log-optimal portfolio, we assume that investors only 

consider long-term performance; to find the Markowitz portfolio, we assume that 

investors are strictly variance averse. We also assume that the market is efficient 

(i.e., there are no transaction costs, all investors have the same opportunities and 

information, no single person or company can significantly affect the Market portfolio 

with its actions, and no arbitrage opportunity exists) and that there exists a Zero- 

Coupon Treasury bond B  that follows the process:

dln(f?) = r /d t;

where r /  is the risk-free rate.

We assume that a risk-neutral Brownian motion (Brownian motion under the
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risk-neutral probability measure) can be formed for any market asset S :

d6 s =  d B s + (!2 ± M ^ i ) d( p .3)

(see, e.g., Duffie (1996, p. 112)). Therefore, we can rewrite (3.1) as

d ln(S) =  us<3dt + o-s dB, (3.4)

where

is the risk-neutral expected growth rate. Note that this risk-neutral expected growth 

rate satisfies (2.3).

To solve for the value of an American-style option of time length T , we break up 

the time length into n time steps of length A t = T /n . Then, for example, we rewrite

(3.4) as the discrete-time equation,

A ln(S) =  |'Tf — At -f crs\/AtAB,

and approximate using lattice techniques (see ch. 4).

To solve for the value of a European-style option, we may only need to know the 

price of 5  at a few time points. Seen from time t, the price of S  at time t  + 1  has the 

lognormal distribution:

S{t+  1) ~  5(t)LN(i/5At,cr|At).
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The mean of S ( t+ 1) is S(t) exp[i/£rA£-f <7§(At)/2]. And, the risk-neutral distribution 

at time t  +  1 is

To price a standard European call or put option in continuous time, we use a 

closed-form solution of the Black-Scholes option pricing equation (see, e.g., Luen- 

berger (1998a, p. 351)). The Black-Scholes call option formula assumes a known and 

constant volatility of a lognormally-distributed underlying asset. If the price of the 

option is known, we are able to calculate this volatility. The Black-Scholes pricing 

equation also prices a limited number of other simple derivatives. For more infor­

mation on financial theory, see Luenberger (1998a); Duffie (1996); and Huang and 

Litzenberger (1988).

Unless otherwise specified, we assume that the volatilities and interest rates in our 

models are constant over time. W ith only trivial changes to the analysis, these para­

meters can be made a function of time and proportional dividends can be included.

3.1 Risk-Neutral Expectations

T heorem  3.1. For any observable Z  that follows (3.1) (or can be transformed to 

follow (3.1)),

Stj(i +  1) ~  S(()LN ( r ,A t  -

(3.5)
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w h ere  @z ,m  =  Pz .m ^ z / ^ m  a n d

E(dBz dBM)
=  — a t—

is the correlation between Z  and the Market portfolio.

Proof. First note that we can rewrite (3.1) as

dln(Z) =  i>z dt +  (TzPz m ^ m +  az\J^ — Pz,m dB/, (3-6)

where Bm is the Brownian motion of the Market portfolio and B/ is a Brownian 

motion independent of Bm- Substituting dBM from (3.3) for dBM gives us the desired 

result. □

3.2 Closely-Correlated Asset

In practice, it is often more difficult to accurately estimate the parameters of the 

Market portfolio than to estimate the parameters of an asset S  that is closely cor­

related with our observable Z . For example, imagine that Z  is the market share of 

Intel in computer processors sold in the world and that S  is the stock price of a major 

processor manufacturer. We can find the growth rate of Z  with the parameters of S  

by estimating the correlation between Z  and S, pz ,s, and by assuming that the rest 

of the uncertainty in Z  is uncorrelated with M  (i.e., pz ,M =  Pz,sPs,m )-

T heorem  3.2. For any observable Z  and asset S  that follow (3.1) where pz,M —
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PZ,SPS,M>

Vz ~ vzQ =  Pz,s ( ^ s  +  -  rf^j . (3.7)

Proof. First note that we can rewrite (3.1) as

dln(Z) =  i^di +  (TzPz.sdlSs +  ffz ^  1 ~  p \ts  dB/, (3-8)

where B$ is the Brownian motion of the closely-correlated asset and B/ is a Brownian 

motion independent of B$ (and BM). Substituting dBs from (3.3) for dBs gives us 

the desired result. □

3.3 Risk-Neutral Growth Rates

To find the risk-neutral expected growth rate of an observable Z, uzQ, we use the

following three equation types (G-l to G-3) derived from theorem 3.1 and 3.2.

G—1 For any asset S :

usQ = r f -  . (3.9)

G—2 For any observable Z  and asset S  with pz,xr =  Pz,sPs,m -

vzq = vz  — P z ,s  ~  r f J  • (3.10)
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G—3 For any observable Z:

vzQ = vz -  Pz,m ( vm + 2aM ~ rf Sj  • (3.11)

Note that for the log-optimal portfolio, Luenberger (1998a, p. 436) shows that

+  \ a h  ~ rf =  ° \ t -

This simplifies our analysis since we only need to estimate the growth rate or volatility 

of the Market portfolio, instead of both. With the log-optimal portfolio, G-3(3.11) 

reduces to

uzQ = uz -  PzMalf

or

uzQ = vz — PZMaZ \J ^ M  — rf)-

Exam ple 3.1 (E uropean  Call O ption). Price a European call option C  on an 

asset S  with strike price K  that expires at time 1. Assume 5(1) ~  5(0)LN(0,1) and 

the risk-free rate is 0.05.

The value of C  can be written as

Co =  e - 05 / " W l )  -  A1ds„(l),
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and from G-l(3.9), we calculate that

SQ(1) ~  S(0)LN(-0.451,1).

Exam ple 3.2 (N orm ally -D istribu ted  Observable). Assume that an observable 

Z  follows the process:

d Z  =  dBz;

that the correlation between ez  and the Market portfolio, pez M, is .5; that the volatil­

ity of the Market portfolio is 0.3; that the expected growth rate of the Market portfolio 

is 0.14; and that the risk-free rate is 0.05. Find the risk-neutral process of Z.

We first notice that ez follows the process:

dln(ez ) = dB z .

Therefore, uez =  0 and cr̂ z (l) =  1. We can then calculate uezQ using G-3(3.11):

V q =  (.14 + Y "  o s)  =  --225;

and thus,

d Z  — —.225d t +  dBz .
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3.4 Learning

In this section, we explore the effects of an unknown expected growth rate or un­

known volatility of an observable Z  on the value of an option. If both are unknown, 

proper updating can be handled but not by a closed formula, so it is left to the inter­

ested reader (see, e.g., Gelinan, Carlin, Stern, and Rubin (1995)). Throughout this 

section, we assume that Z  is observed at discrete time intervals of length At and is 

uncorrelated with the Market portfolio.

3.4.1 Growth Rate

Assume that we do not know the expected growth rate of an observable Z, uz, but 

instead believe that it is Normally distributed:

i/z(£)At ~  N[m(t)At, t 2(£)A£|.

After we observe a return zt+\ from a distribution

R z(t +  1) ~  LN[i/z(£)At, o f  At] ~  LN[m(£)At, <r|At -I- r^ tJA t], (3.12)

the variance in our estimate becomes

r2(i +  1) =  4  +  r 2(t)* (3' 13)
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and our estimate of the mean becomes

(see, e.g., Gelman et al. (1995, pp. 42-5)). In general, to update our estimate of the 

mean after n samples:

Note that the learning effect is dependent on the initial uncertainty about the 

growth rate, the volatility, and the time between observations (which should at least 

be long enough that the continuous-time assumption is reasonable).

Exam ple 3.3 (L earning A bout G row th  R ate). Suppose we want to value an 

option C that pays Z  dollars if exercised, where Z  is an observable. The value 

of Z  can be seen and the option can be exercised at time 1 or time 2. Also suppose 

the current value of Z  is 1, the return of Z  has distribution

Rz(t) ~  LN[i/z(<),.2],

and we believe the expected growth rate has distribution

vz {t) ~  N tm ^ .r2^)],

where m(0) =  0 and r 2(0) — 0.5. Assume the risk-free rate is 0.05.
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From (3.12), we can write the distribution of the observable as 

Z(t +  1) =  Z(t)LN[m(t), .2 +  t 2(£)].

We calculate the distribution of the observable at time 1 as

Z{ 1) ~  LN(0, .7).

Using (3.13) and (3.14), we update the variance of our estimate of the expected growth 

rate:

r(l) =
r 2(0)<r| 1

r 2(0) +  a \  7 ’ 

and the mean of our estimate of the expected growth rate:

(r2zm (0)+ T2(Q)]n[Z{l)] 5 f .
m (L)----------- 4  + tHO)-------------7 tat-Z(l)].

Then we can calculate the distribution of the observable at time 2:

12 '

Z(2) ~  Z(1)LN
m(1)' 35

We exercise at the end of year one if, and only if, the expected return of the observable 

is less than the risk-free return. That is, we exercise if

E[RZ{2)] =  exp |m ( l )  + ^[<4 +  ^ (1 )]}  

=  exp | | ln [ Z ( l ) ]  +  .0397j < e 05,
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which is equivalent to Z( 1) < 1.015. The value of the call option is the sum of the 

payoffs if we exercise and if we do not exercise:

poo poo  / * 1.015

Co =  /  /  Z(2)dZ(l)dZ(2) +  /  Z {l)dZ (l).
J  0 J  1.015 J  0

3.4.2 Volatility

Now assume that we know the expected growth rate but do not know the volatil­

ity. Instead, we believe that the square of the volatility has an inverse chi-squared 

distribution:

a \( t)A t  ~  Inv-x2[«(£)At,<;2(t)At]

(chosen for its updating properties). The notation Inv-x2(«, <r) represents kk/x2 where 

k is the number of degrees of freedom and  ̂ is a scaling factor (Gelman et al. 1995). 

The density function of Inv-x2 can be found in Gelman et al. (1995, p. 474). Note 

that k can be interpreted as the number of observations and that ? can be interpreted 

as the average squared deviation of those observations. The expected value of the 

squared volatility is

After we observe a return Zt+i from a distribution

Rz {t +  1) ~  LN[i/zAt, <r|(t)At] ~  LN{i/zAt, E[<r|(t)]At}, (3.16)
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the number of degrees of freedom, «, increases by one:

K(t+  1) =  K(t) +  1; (3.17)

and our new scaling factor becomes

c2(t +  1) At =
«(tK2(t)(At)2 + [lnfo+i) -  uz A t\2 

K.(t)At +  At
(3.18)

(Gelman et al. 1995, pp. 46-8).

Exam ple 3.4 (L earn ing  A b o u t V olatility). Suppose we want to value an option 

C  that pays Z  dollars if exercised, where Z  is an observable. The value of Z  is seen 

and the options can be exercised at time 1 or time 2. Also suppose the current value 

Of Z  is 1, the return of Z  has distribution

flz(t) ~  LN[0.2,4(()1,

and we believe the squared volatility has distribution

«r|(t) ~  Inv-x2[«:(t),«r2(t)],

where rc(0) =  5 and <r2(0) =  0.2. Assume the risk-free rate is 0.05. 

Prom (3.16), we can write the distribution of the observable as
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We calculate the distribution of the observable at time 1 as

Z( 1) ~  LN (.2, j )  .

Using (3.17), we update the number of degrees of freedom of our estimate of the 

squared volatility: «(1) =  6; and using (3.18), we update the seeding factor of our 

estimate of the squared volatility:

<2(1) _ i + {Mzwi --2}*

Then we can calculate the distribution of the observable at time 2:

Z(2) ~  Z(1)LN (u z ( 1) , 1 1  ~  -2>2^ .

We exercise at the end of year one if, and only if, the expected return of period two 

of the observable is less than the risk-free return. That is, we exercise if

E[K*(2)] =  e x p |^ ( l )  +  iE [< r|(l)] | 

=  exp (.325 -  ^ v / l  +  { ln [Z (l)]- .2 }2 +  {li,[Z(l)| -  ,2}2)  < e “ ,

which is never true. The value of the call option is thus:

C o=  r  r  Z(2)dZ (l)dZ (2).
Jo Jo
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Figure 3.1: A learning lattice.

3.4.3 Learning Lattices

We next examine how to build a binomial lattice when we have an unknown expected 

growth rate. Because our estimate of the expected growth rate changes, we must 

force the observable’s moves into a  lattice as we build forward. Note that lattices for 

other unknown parameters can be built using techniques horn this section, although 

these lattices may require a trinomial or higher order lattice.

Assume that we want to price an option on an observable Z. We believe the 

expected growth rate at a particular node has distribution

uz (a,t) ~N [m (a,t),T a(t)],

where a is the number of up moves that have been made at the node and t is the time 

at the node. The return of Z  at node(a, t) has distribution

Rz{a, t) ~  LN[i/z (a, t) ,a%\ ~  LN[m(a, t),<r| +  r 2^)].

We build the learning lattice (see fig. 3.1) in three steps. We first build the middle
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section of the lattice, then the upper half of the lattice, and then the lower half of 

the lattice. The initial node has value ln(2o). After we find the first up and down 

moves, we set

node(l, 2) =  ln(Zo) + 2m(0, 0)

to keep the lattice form. After we find the up and down moves from node(l,2), we 

set

node(2,4) =  ln(Zo) +  4m(0,0).

We continue building in this manner until the entire middle section of the lattice is 

complete. Then, we build the upper half of the lattice by ensuring that the down 

moves reconnect with the lattice. In the lower half of the lattice, we ensure that the 

up moves reconnect with the lattice.

To find the size of our first up and down moves, we use the method of moments 

approximation (see sec. 4.2.1):

ix(0, 0) =  m(0,0) +  ^ /(j| +  r 2(0)

and

d(0, 0) =  m(0 ,0) -  \ j a \  +  r 2(0).

To ensure that our branches reconnect at node(l,2), we set d(l, 1) =  d(0,0) and 

u(0, 1) =  u(0,0) (see fig. 3.1). Then we calculate the mean of our estimate of the
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expected growth rate using (3.15):

m( 1,2) =  m(0,0).

In general, for nodes(t/2,t) and all even t (the entire middle section of the lattice),

m  =  ™ (M ),

“(f’O =U(|,f+1) =m(°>°) + \/<Ti + r2(i).
and

= d ( ^  + l , t  + l j  — m(0,0) -  yJ<T2z  + T2( t ) .

Notice in figure 3.1 that u (l, 1) and d(l, 1) make smaller absolute moves than u(0 ,0) 

and d(0,0) since r 2( 1) < 7̂ (0).

In the upper half of the lattice, we again need to set the down moves so that we 

keep a lattice form. This equates to setting:

d(a, t )  =  d(a — 1, t  — 1) +  u(a — 1, t) — u(a — 1, t — 1).

We also update the mean of our expected growth rate:

. m ( a - l , t - l ) ( r |  +  r 2( t - l ) u ( a - l , t - l )
m(°, t) = -------------------ZjT TZA'u— V\------------------ *
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With d(a, t) and m(a, t) in place, we solve the following set of equations:

Pu +  Pd  =  1 

puu(a, t) +pdd{a, t) — m(a, t) 

puu2(a, t) + pdd2(a, t) = a \  +  r2(t) +  m2(a, £);

to find

u(a, £) =  m(a, t) H T ^
m(a, t) -  d(a, t ) '

(Smith (1990, pp. 43-7) shows that we can always solve this set of equations. More 

generally, he shows that we can almost always set one of j  moves in advance and still 

match the first 2j  — 2 moments.) We use a similar method to find the lower half of 

the lattice, which completes the development of the lattice.

When using this procedure, we obtain lattices that are similar to standard lattices. 

The main difference is that the probability of an up move sometimes becomes large in 

the top half of the lattice and small in the bottom half. If the variance in our estimate 

begins much larger than the squared volatility of the observable, these probabilities 

quickly grow close to one and zero. One way around this problem is to use larger 

time steps, but this leads to less accurate results. Another way is to not force the 

moves into a lattice for the first few time steps. This increases the number of nodes 

in the lattice, but the variance in our estimate quickly decreases to acceptable levels 

because the smaller the volatility is, the faster the variance in our estimate decreases. 

Another alternative is to use a  trinomial lattice, which has more flexibility in setting 

the lattice parameters.
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Figure 3.2: Weekly and bi-weekly learning.

E xam ple 3.5 (L attice  L earning A bout G row th R a tes). We want to price a one- 

year option on an observable Z. The current value of Z  is 100 and the option pays 

Z  — 100 dollars if exercised. We observe the value of Z  at weekly intervals. The 

option can be exercised at any time. We believe that the volatility of Z  is 0.5 and 

that the expected growth rate of Z  has a Normal distribution with a mean of 0 and 

variance of r 2. The risk-free rate is 0.05.

We approximate the value of the option with a binomial learning lattice with 52 

time steps (i.e., At =  1/52). This option is priced for variances of our expected growth 

rate of r 2(0) 6  [0, .05] (see fig. 3.2). Notice the drastic change in the value of the 

option as the variance in our estimation of the growth varies. The options with lesser 

known growth rates are much more valuable since being uncertain about the expected 

growth rate is similar to increasing the observable’s volatility. For comparison, we also
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price this option when we observe the value of Z  at bi-weekly intervals (see fig. 3.2).

Through experimentation with this example, it appears as though continuous 

learning with a Normally-distributed growth rate leads to an infinitely-valued option.

3.5 Application —  Development in Phases

A small firm has discovered a new technology that will allow the development of the 

next wave of hard disk drives. Around every six months, there is a new generation of 

hard disk drives. Unfortunately, the firm is understaffed and will be unable to develop 

the hard drive within six months; so, it must sell its technology. There is also a large 

company who, among other things, manufactures hard drives. Recently however, the 

large company has fallen behind with its technology and realizes that by the time the 

technology catches up, the company will have missed out on the latest generation. 

We seek to find the net present value of a possible synergy between the two firms. 

When trying to value this synergy, we find that the largest risk is development time. 

Traditionally and intuitively, this risk has been accounted for by simply taking the 

project manager’s best guess of how many engineers are needed to maximize the 

chance of completing the project or getting to market on time. Unfortunately, this 

method undervalues the acquisition because it does not account for the option to 

abandon the project or to change the number of workers during the project.

We value this acquisition for the large manufacturer, and assume that the acqui­

sition is small enough for us to be risk-neutral. Since other manufacturers will have 

the new hard drive ready in six months, and since this drive will only be sold for six 

months after that, it is important that we complete the development in time. We 

will make decisions on the number of engineers to use every quarter. Furthermore,
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Maiketing Department
External Factors
•Fixed ~ Interest Rates, Margin Per Unit 

•Private Risk — Market Share 

•Market Risk — Market Size

Project Manager
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•Fixed -  Development and Switching Costs 

•Private Risk — Development Time and Updates 

•Decisions -  Number of Engineers

✓
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Figure 3.3: Forecasting needed.

we are able to divide the development into two distinct phases, the design phase and 

the prototype phase. Our goal is to solve for the optimal scheduling strategy and 

maximum buying price of the acquisition. To this end, we obtain information from 

the marketing department and the project manager.

Figure 3.3 shows what forecasts need to be made and by whom. It also describes 

which factors are fixed, private risk (risk that cannot be hedged by buying or selling 

any market asset), and market risk (risk that can be hedged by buying or selling a 

market asset). The arrows show that the value of the acquisition depends on both 

the external and internal factors and that the decision on the number of engineers 

depends on the value of the acquisition. Thus, the decision on the number of engineers 

is indirectly influenced by the external factors.
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3.5.1 Marketing Department

Our marketing department believes that the market size for hard drives has an ex­

pected growth rate of 25% and a volatility of 30%. The market size has a 70% cor­

relation with a basket of personal computing stocks, which has an expected growth 

rate of 15% and an implied volatility -  as seen from options on the market -  of 

30%. There were 800,000 hard drives sold last quarter. The marketing department 

estimates that if the new hard drive is ready within six months, our market share 

will be about 50% for the remaining two quarters. If the product is delivered one 

quarter late, our market share will be about 20% for the remaining quarter. No sales 

will be made after the fourth quarter. The department also believes that our market 

share is uncorrelated with the Market portfolio and that it should be modeled as 

a random variable that has an equal chance of rising or falling by five points each 

quarter. Historically, the margin on each hard drive sold has been ten dollars and the 

department expects no change. The risk-free rate is 10% and we assume that it will 

remain constant throughout the life of the project.

3.5.2 Project Manager

Our project manager estimates how many quarters it will take various numbers of 

engineers to complete the design phase in the best, average, and worst circumstances 

in table 3.1. For example, table 3.1 shows that twenty engineers will take two quarters 

to complete the design phase in the worst case. We assume that this implies that 

one-half of the design phase will be completed after one quarter. If we again use 

twenty engineers in the second quarter, then in the best case we will complete the 

design phase and one-half of the prototype phase. In general, after the design phase
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Table 3.1: Quarters to Complete Design Phase
Number of 
Engineers Best Average Worst
Five 2 3 3
Ten 1 2 3
Fifteen 1 2 2
Twenty 1 1 2
Twenty-Five 1 1 2

Table 3.2: Quarters to Complete Prototype Phase

Engineers
Expected

Best Ave Worst
Short

Best Ave Worst Best
Long
Ave Worst

Five 1 2 2 1 1 1 2 3 3
Ten 1 1 2 1 1 1 1 2 3
Fifteen 1 1 1 1 1 1 1 1 2
Twenty 1 1 2 1 1 1 1 2 3
Twenty-Five 1 1 2 1 1 1 1 2 3

is complete, a more accurate estimate of the number of quarters to complete the 

prototype phase will be given. Table 3.2 shows the updated prototype phase. There 

is a 50% chance that there will be no change in the estimate, a 25% chance that it will 

be lengthened, and a 25% chance that it will be shortened. The manager believes that 

the probability of a best or worst outcome in any quarter and any phase is 25% each, 

and the probability of an average outcome is 50%. We can see from table 3.1 and 

table 3.2 that there are decreasing returns with the number of engineers. Thus, the 

intuitive strategy is to use twenty engineers in the design phase and fifteen engineers 

in the prototype phase. This strategy maximizes the chance of completing the project 

on time (62.81%) and minimizes the chance of not completing it at all (0.55%). We
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Figure 3.4: The development process.

compare this strategy to the optimal strategy in the next section. The number of 

engineers can be changed at the end of each quarter, but the quarter immediately

worst outcome. The cost per engineer per quarter is $80,000 paid at the beginning 

of the quarter.

3.5.3 Strategy and Valuation

An outline of the development process is shown in figure 3.4. We model market size 

as a binomial lattice. The risk-neutral growth rate of the market size Z  is found b m  

equation G-2(3.10) as
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where S  is the price of the basket of personal computing stocks correlated with the 

market size. Using the binomial log-transform lattice(BI) (see sec. 4.2.1) with a time 

step of one quarter, the chance of moving up or down is one-half, the up move of the 

lattice is

ln(iz) =  vzQk t  +  <rz \/A t =  +  |  =  .1959,

and the down move is

ln(d) =  uZqA t -  oz \[E t =  ~ W ~  —.1041.

We model market share as a binomial lattice that moves up or down five points per 

quarter with equal chance. To solve with dynamic programming, we solve for the 

optimal strategy at the end of quarter two; knowing what our strategy will be then, 

we solve for the optimal strategy at the end of quarter one; knowing that, we solve 

for the current optimal strategy. To find the optimal strategy at each time point, 

we consider which phase we are in (design or prototype), the amount of work left 

to complete the phase, the length of the phase (if prototype), the market share, the 

market size, and the number of engineers we used last quarter.

The optimal strategy is to begin with twenty engineers. If the design phase is not 

completed during the first quarter, however, we will stop development unless both 

the market size and market share have moved favorably, in which case we will use 

fifteen engineers in the second quarter. If the design phase is completed in the first 

quarter and the project manager feels that the prototype phase will be short, then 

we will use five engineers in the second quarter; if he feels that the prototype phase
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Table 3.3: End of Quarter Two Engineers

Work Sh D ShM ShU Sh D ShM ShU Sh D ShM ShU
Left Update SiU Si U S iU SiM SiM SiM SiD SiD SiD
> .5 Short 5 5 5 5 5 5 5 5 5
> .5 None 0 15 15 0 15 15 0 15 15
> .5 Long 0 15 15 0 0 15 0 0 15
<  .5 Short 5 5 5 5 5 5 5 5 5
<  .5 None 5 5 5 5 5 5 5 5 5
<  .5 Long 0 15 15 0 15 15 0 15 15

Notes: ‘Sh’ represents Market Share, ‘Si’ represents Market Size, ‘U‘ represents Up, 
‘M’ represents Middle, ‘D’ represents Down, and ‘Work Left’ represents the amount 
of development remaining to complete the prototype phase.

will be long or as previously expected, we will use fifteen engineers. If the prototype 

phase is not completed by the end of quarter two, then the future strategy will vary 

as a function of the amount of work left, the prototype update, the market size, and 

the market share (see table 3.3).

A comparison of the intuitive and optimal strategies is shown in figure 3.5. Both 

the optimal and intuitive strategies result in a 62.81% chance of completing the project 

on time. The difference between the two strategies is in the chance of abandoning 

the project as opposed to completing the project late. The optimal strategy has a 

9.03% chance of abandonment, and the intuitive strategy has only a .55% chance of 

abandonment. The higher rate of abandonment lowers costs and makes the acquisition 

19.04% more valuable with the optimal strategy than with the intuitive strategy. The 

maximum buying price of the acquisition is $3.37 million.
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Figure 3.5: The optimal number of engineers varies and is shown above the nodes. 
The intuitive number of engineers is shown below the nodes.
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Chapter 4

Lattices

To solve for the value of more complex derivatives, numerical methods are used. 

The most important attribute of these methods is whether a risk-neutral valuation 

technique can be used to simplify the calculations and to transform variables so that 

only one discount rate is necessary (see, e.g., Luenberger (1998a, pp. 251-3) and Duffie 

(1996, p. 91)).

The values of complex derivatives in which the strategy is known in advance are 

approximated by Monte Carlo Simulation, a simple and flexible method for pricing 

European-style derivatives. Monte Carlo Simulation uses random numbers to sample 

many different paths that the underlying variables could follow under risk-neutral 

probabilities or growth rates. Each path’s payoff is discounted at the risk-free rate 

and the average of these payoffs is the estimated value of the derivative. It is powerful 

when there are many underlying variables or path-dependent payoffs.

When the strategy is not known in advance, we break up the moves of the under­

lying asset into many pieces and form a grid of nodes that represents various asset 

prices at a  finite number of time points. The value of the derivative is found with a

58
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dynamic-programming-type procedure, which is a backward-looking procedure as op­

posed to a forward-looking procedure like Monte Carlo Simulation. Backward-looking 

means that the value of the derivative is found by first calculating the value at the 

end of the derivative’s life and then working backward. There are two major types of 

methods that use grids, finite difference methods and lattice methods.

A finite difference method values derivatives by numerically solving the differen­

tial equation that the derivative satisfies. The equation is converted into a set of 

difference equations and is solved with dynamic programming. The largest benefit of 

a finite difference method is that it is the only method that handles many different 

starting values at once. It is arguably the most complex and least intuitive of the 

methods, however. In addition, for some derivatives, especially those that have multi­

ple interacting options, we cannot form an explicit set of partial differential equations 

(see, e.g., TVigeorgis (1996, pp. 305-6) and Hull (1993, pp. 352-62)).

A tree consists of a set of nodes with time represented along the horizontal and a 

variable’s value represented along the vertical. A binomial tree starts out as a single 

node, which represents a variable’s value today, and branches into two new nodes 

that represent the variable’s value at the next time point; then each of these nodes 

branches into two new nodes and so on. A lattice is a tree that recombines. For 

example, an up move followed by a down move leads to the same variable value as a 

down move followed by an up move. Lattices contain significantly fewer nodes than 

other trees for a given number of time steps.

The most commonly used lattice for representing stock prices is the multiplicative 

binomial lattice of Cox, Ross, and Rubinstein (CRR) (Cox, Ross, and Rubinstein 

1979). The CRR Method begins with a discrete-time approximation of geometric
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Brownian motion and then builds a lattice. It then finds the risk-neutral probabilities 

of the lattice for proper pricing. The CRB. Lattice’s weaknesses are it is only capable 

of handling one underlying asset at a time and it does not price accurately for all 

parameters. For a more detailed comparison of the CRR Method, finite difference 

method, and Monte Carlo simulation; see Geske and Shastri (1985).

There are many ways to build lattices for representing a variable’s values. Several 

lattices have been built that approximate a risk-neutral lognormal diffusion model 

(Log-Transform Model) (Trigeorgis 1991; Omberg 1988; Jarrow and Rudd 1983, 

pp. 183-6). The method of Omberg (1988) approximates the Log-Transform Model 

by matching moments of the Normally-distributed Brownian motion. A moment- 

matching method approximates a continuous distribution with a discrete one by 

matching as many consecutive moments as possible starting horn the zeroth mo­

ment. These lattices can be of any order (e.g., Binomial(BI) or Trinomial(TRI)). To 

make the lattices more efficient and to increase the accuracy around the optimal ex­

ercise point, Omberg (1988) also builds lattices by using equal spacing between nodes 

(with spacing equal to the spacing of the innermost node found in the pure moment 

matching method). Jarrow and Rudd (1983, pp. 183-6) also build the BI. Tian (1993) 

tests a lattice he builds from matching the moments of the lognormal distribution of 

the underlying asset (see Easton (1996) for a note on the test results).

Real options models typically contain a web of interacting compound options, 

have several underlying variables, and are quite complex. Lattices are arguably the 

most useful tools for valuing many real options because they are simple, intuitive, 

flexible, and able to handle early exercise and many types of underlying stochastic 

processes.
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4.1 How to Compare

In this dissertation, we seek a simple lattice method that gives an accurate approxi­

mation of the value of myriad options that contain at least one discontinuity. More 

specifically, we want the following three attributes:

Simplicity A simple method is intuitive and easy to understand and use.

Accuracy An accurate method prices options close to the real value with few cal­

culations. We will define four types of accuracy: Distribution Accuracy is the 

accuracy of the approximating distribution of the underlying variable at any 

given time point. With more nodes at a given time point, we more accurately 

pinpoint the optimal exercise price. Time Accuracy is the accuracy with which 

we model the time line. With more time steps, we more accurately pinpoint 

the time to exercise an option. Standard Accuracy is the pricing accuracy of the 

lattices in standard error statistics. Percentage Accuracy is the pricing accuracy 

of the lattices in percentage error statistics.

R obustness A robust method is consistently stable, accurate, and simple for both 

univariate and multivariate options with a wide range of parameters. A stable 

method’s discrete-time approximation converges exactly to its continuous model 

as we shrink the time step to zero. According to Lindeberg’s Central Limit 

Theorem, for a lattice to have stability when approximating Brownian motion, 

it is sufficient that each probability is between zero and one; the zeroth, first, and 

second moments are matched; and the moves are independent of the underlying 

variable’s values (Tian 1993). To have stability when approximating multiple 

Brownian motions, we must also match the correlations between variables. If
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the method is stable for all parameters, it is unconditionally stable. If a method 

is stable, then the expectation of a terminal payoff in discrete time will converge 

to the continuous time one. For conditions and proofs of convergence of more 

general strategies (e.g., path-dependent strategies), see Kushner and Dupuis 

(1992).

4.2 Log-Transform Model

Let At = T /n  be the length of each time step, where T  is the total time and n is the 

number of time steps. To approximate the value of continuous-time options on an 

observable Z  with a lattice, the dynamics of (3.4) are converted into the discrete-time 

model,

A in (Z) = uzQA t +  az\/AtAB,

where uzQ is the risk-neutral expected growth rate of Z, <Jz is the risk-neutral volatil­

ity of Z  (same as the original volatility of Z), and B is a risk-neutral Brownian 

motion. We first approximate AB using a pure moment-matching method. Then 

we use a moment-matching method that requires equal spacing between nodes. And 

finally we use a moment-matching method that requires both equal spacing and equal 

probabilities. Each of these methods is extendable to multiple lattices, uncondition­

ally stable for both single and multiple lattices, and easy to understand. Of all the 

lattices tested, the binomial lattice formed out of the Log-TVansform model by pure 

moment matching (Log-TVansform Binomial Lattice (BI)) has the greatest Standard 

Accuracy and the Log-TVansform Trinomial Lattice (TRI) has the greatest Percentage
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Accuracy (see sec. 4.4 for detailed test results), and both are easy to use.

4.2.1 Pure Moment Matching

The pure moment-matching method matches as many moments of AB as possible.

Since the Log-TVansform Quadrinomial (Quadrinomial) and higher-order lattices have 

more than one spacing size, they are more difficult to use, have an increased number 

of nodes per time step, and have decreased pricing accuracy. As the number of nodes 

in the lattices is increased, the Distribution Accuracy increases faster than the Time 

Accuracy, which could be the reason for their decreased pricing accuracy.

The kth  moment is defined as E(x^) (see Billingsley (1995) and Johnson and 

Kotz (1972) for more information on moments). There are restrictions on what the 

moments of a probability distribution can be; for example, the variance-covariance 

matrix should be positive semi-definite (see Smith (1990, p. 22) for other examples). 

We must be careful because these restrictions are sometimes violated when using 

estimations of moments (especially correlations).

To use moment matching to approximate AB by a tree with j  possible moves at 

each node, we solve the following 2j  equations for the unknown variables and p»:

where is the size of the move and p< is the probability of the z'th move occuring.

Using the method of Smith (1990, p. 37), we can always find a tree with j  possible 

moves at each node by matching the first 2j  — 1 moments, that is, we can always 

solve (4.1) with nonnegative probabilities. This tree underestimates the magnitude

3
(4.1)
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of all even moments of order greater than or equal to 2 j  (Smith 1990, p. 59).

We know AB is Normally distributed with mean 0 and variance cr|At. The BI 

assumes that in each short interval of time, At, ln(Z) either moves up by u or moves 

down by d. Let qu represent the risk-neutral probability of making an up move of 

size u, and let qd represent the risk-neutral probability of making a down move of size 

d <u. To find the parameters of the BI, solve (4.1) for A: =  0,1,2,3:

Qu +  qd =  1 

quu  +  qdd =  uZq 

quU2 +  qdd2 =  v \q +  a \

<7«u3 +  qdd3 =  v \Q + ZvZqo \.

The risk-neutral probability of an up or down move is 1/2, the up move is u = 

uZqAt + <rz y/A t, and the down move is d = uZq A t — az ^/A t. The fourth moment 

of the approximation is 2a \  less than the fourth moment of the Normal distribution, 

which is 3 a |.

As we will see in chapter 5, the BI is extendable to multiple lattices. Jarrow 

and Rudd (1983, pp. 183-6) and Omberg (1988) also constructed the BI. In addition, 

Omberg (1988) uses pure moment matching to build the TRI and other lattices out 

of the Log-TVansform Model.

Probabilities and moves are shown in table 4.1 for the TRI, Quadrinomial, and 

Log-TVansform Quintinomial (Quintinomial) lattices. Table 4.1 shows the largest 

absolute move of the lattice on the left and then moves progressively towards the 

smallest absolute move. For example, the TRI can make three moves: up u, down d,
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Table 4.1: Moment-Matching Lattices

TRI Quadrinomial Quintinomial
Probability l 2 

6’ 3 ( 3 - v'6 ) /12 , (3+ n/6)/12
j j

7—2v/l0 7+2V10 o /i c 
60 > 60 ' /

Spacing n/3 ,0 V 1 + \ /5  +  2 ^ ,  \ / 1 -  \ /5  -  2v/6 y/5 + vTO, y/b — \ / l 0,0

Note: The moves are centered around the expected growth rate, uzqA t, and are in 
terms of azy/A t.

or middle m. The probability of either an up or down move is 1 /6  and the probability 

of a middle move is 2/3. The TRI matches the first five moments, but undervalues the 

sixth moment of the Normal distribution, which is 15ff|, by 6<r|. The Quadrinomial 

can make four moves: a large up move, a small up move, a small down move, or a large 

down move. The Quadrinomial performed poorly under testing. The Quintinomial, 

which has five possible moves, also has two spacing sizes but was not tested since it 

is difficult to use and since the Quadrinomial had poor results.

4.2.2 Equal Spacing

One way to ensure that a lattice recombines is to force the moves to be equally- 

spaced. We build an Equal-Spacing lattice by finding the lattice that has equal 

spacing between moves, matches as many moments as possible, and is as close as 

possible to matching the next moment. With the equal-spacing constraint, however, 

we match fewer moments. For example, the Equal-Spacing Quadrinomial Lattice 

matches three moments instead of the Quadrinomial’s seven, and the Equal-Spacing 

Quintinomial Lattice matches five moments instead of the Quintinomial’s nine.
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Table 4.2: Equal-Spacing Lattices
Quadrinomial Quintinomial

Probability
Spacing

.05, .45 
<TZy/2QAt/9

1/75,16/75,41/75 
£7zv^l5At/8

Note: The moves are centered around the expected growth rate, uZqAt.

The probabilities and spacing for the Equal-Spacing Quadrinomial and Equal- 

Spacing Quintinomial lattices are shown in table 4.2. Equal-Spacing Lattices are 

easy to use and have a lot of Percentage Accuracy; however, the pricing accuracy 

drops with higher order lattices. Because of the equal spacing, the Time Accuracy 

and Distribution Accuracy increase at the same rate, which leads to greater pricing 

accuracy. In particular, the Equal-Spacing Quadrinomial Lattice has a good balance 

of both Standard Accuracy and Percentage Accuracy, and the Equal-Spacing Quint­

inomial has less pricing accuracy than the Equal-Spacing Quadrinomial or than the 

TRI.

4.2.3 Equal Probability and Equal Spacing

Another way to design a lattice is to equate the spacing and to equate the probabili­

ties. For example, the Equal-Probability Trinomial has a one-third chance of moving 

up, down, or middle. The parameters of these lattices are easy to find since we are lim­

ited to matching the first three moments. The first and third moments are matched 

by centering the spacing around the mean and the second moment is matched by 

choosing the step size. Equal-Probability lattices, which include the BI, have a lot of 

Standard Accuracy; however, pricing accuracy drops with higher order lattices. The
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Table 4.3: Equal-Probability Lattices
__________Trinomial Quadrinomial Quintinomial

Spacing a zy jZ ^ t/2  <Jz\j4ktl'b Oz \J  At/2

Note: The moves are centered around the expected growth rate, vzQ&t.

Table 4.4: Comparisons of Log-TVansform Methods
Moments Standard Percentage Ease of
Matched Accuracy Accuracy Use

BI 3 High Medium High
TRI 5 Low High High
Equal-Probability TVinomial 3 Medium Medium High
Equal-Spacing Quadrinomial 3 Medium Medium Medium
Equal-Probability Quadrinomial 3 Medium Low Medium
Equal-Spacing Quintinomial 5 Medium Low Medium
Equal-Probability Quintinomial 5 Medium Low Medium
Quadrinomial 7 Low Low Low
Quintinomial 9 Low Low Low

spacings for the Equal-Probability TVinomial, Equal-Probability Quadrinomial, and 

Equal-Probability Quintinomial lattices are shown in table 4.3.

4.2.4 Comparisons

Table 4.4 compares the Log-TVansform Lattices in number of moments matched, 

Standard Accuracy, Percentage Accuracy, and ease of use.

To help understand why some lattices perform better than others, the asymptotic 

limits of the number of time steps, end nodes (nodes at the last time step), average 

spacing between nodes, and total range of end nodes were calculated and are shown 

in table 4.5. It is reasonable to assume that having a large range results in more
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Table 4.5: Asymptotic Comparisons
Time End Average Total
Steps Nodes Spacing Range

BI \/%z s/2z i / 8/z 2 ifez
TRI y/z 2 s/z 2^9z
Equal-Probability TVinomial 2 s/z </9/(4 z) 2 i/9 z/4
Equal-Spacing Quadrinomial x/2z/3 ■/Ez ^200/(27z) 2^50z/3
Equal-Probability Quadrinomial s/2zfZ s/Ez </24/(25z) 2{/54z/25
Equal-Spacing Quintinomial \ fr j2 2 s/2z ^225/(32z) 2{/225z/8
Equal-Probability Quintinomial y/z /2 2s/2z ^ 1/ ( 2*) 2s/2z
Quadrinomial s/E2 2.08 2.35y / l / z  * 4.89 *
Quintinomial v/3z/2 2 .6 2 ^ ? 2.33 y/T /z * 6.11^/z *

Note: z is the number of nodes in the lattice. 

* Unequal spacing between nodes.

Percentage Accuracy since the lattice is more accurate at the edges of the underlying 

variable’s distribution. It is also reasonable to assume that having tight spacing 

between nodes results in more Standard Accuracy since for most options the lattice 

is more precise around the optimal exercise point. And, it is reasonable to assume 

that having a large number of time steps plays a role in both of these types of pricing 

accuracies since the Time Accuracy is greater.

4.3 Other Models

In this section, we look at the binomial lattice version of several other types of models 

that use moment-matching methods and at the most widely used lattice model, the 

Cox, Ross, and Rubinstein Binomial Lattice.
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4.3.1 Cox, Ross, and Rubinstein Model

The CRR Model (Cox, Ross, and Rubinstein 1979) is inaccurate and sometimes un­

stable. The CRR Lattice is built through a two-step process, and its pricing accuracy 

depends on the expected growth rate of an asset S, vs, although the actual price of 

the option does not depend on the expected growth rate.

The first step begins with the discrete-time model,

The first-step parameters are found by matching the zeroth, first, and second moment 

of AB, and setting u =  —d:

and u =  y/a%At-¥ i/§(At)2.

This solution is not risk-neutral and therefore not appropriate for pricing. In step 

two, we find the risk-neutral probabilities for our pricing lattice. Prom Q-l(2.14), 

R f =  queu +qd£d, where R f = eTf is the risk-free return. By replacing qd with 1 — qu, 

we see that the risk-neutral probability of an up move is

For stability, we see from (4.2) that we must have u > 77 A t > d, which is expanded

A ln(S) =  t/sAt +  asVAtAB.
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and rearranged to show that we must have

.  T(rj  -  4 )n > ---- ‘—z------.
°s

Notice that the risk-neutral lattice only matches the zeroth and first moments until 

the limit.

This method is complicated because of the two-step process and the two sets of 

probabilities. Several authors present methods that extend this model to multiple 

lattices (Luenberger 1998b; Kamrad and Ritchken 1991; He 1990; Madan, Milne, and 

Shefrin 1989; Boyle, Evnine, and Gibbs 1989; Boyle 1988).

4.3.2 Alternative Log-Transform

The Log-Transform Model does not perfectly match the risk-neutral expected growth 

rate except in the limit (Nawalkha and Chambers 1995). The Alternative Log- 

Transform Model (Alternative) is similar to the Log-Transform Model but matches the 

risk-neutral expected growth rate exactly, which makes it a better model when look­

ing for optimal strategy rules. This model, however, is more complicated and has less 

pricing accuracy than the Log-Transform Model. In the Alternative Log-Transform 

Model, the risk-neutral probabilities, $ , are the same as in the Log-Transform Model 

but the moves, X -, are different than the Log-Transform moves, X{t

X ; =  A V - i a | A t  +  In ^ 2 qjexp(Xj - u ZQAt) 
Li=i
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For example, the Alternative Log-TVansform Binomial Lattice has up move

4.3.3 Multiplicative

The Multiplicative Model is simple but is Normally distributed instead of lognormally 

distributed. Compared to the other models, it has little pricing accuracy when there 

are only a few time steps but it has a medium amount of pricing accuracy when the 

number of time steps is large. This model converts the risk-neutral version of (3.2) 

into the discrete-time model,

To make this model exactly match the risk-neutral expected growth rate, we approx­

imate 1 +  (uzQ +  er|/2)A i with exp[{uzQ +  <r|/2) A£], which results in the following 

process:

(^ z Q ~  A* +  crz y /M  +  In
_j_ g —azVZii

U =
2

+  crzv/AtAB.

We approximate AB by matching moments. For example, the Multiplicative Binomial 

Lattice has returns,
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and

D =  exp

and risk-neutral probabilities, qu = 1 — <7d =  | .

4.3.4 Lognormal

The Lognormal Model starts with the same discrete-time model as the Log-TVansform 

Model but then takes the exponent of both sides to get

This model is powerful in theory, but is difficult to use for pricing since the limitation 

is the accuracy of computing exponents to small powers. It is also complicated to 

find the appropriate parameters. For single underlying derivatives, we use a moment- 

matching method proposed by Smith (1990). But for multivariate derivatives, it is 

difficult. We find the returns, X  (U and Z)), and the risk-neutral probability, q, with 

the binomial moment-matching solution for the lognormal distribution:

Then, instead of matching the moments of AB, it matches the moments of

exp (uZq + 1 4 )
2(e<4 - 1)

^e2̂  — 1 ±  y /e4<7z — fie2"* +  8e"* — 3j
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Table 4.6: Summary of Models
Standard
Accuracy

Percentage
Accuracy

Unconditionally
Stable Robust Simple

Log-TVansform High High Yes Yes Yes
CRR Low Low No No No
Alternative Medium Medium Yes Yes No
Multiplicative Medium Medium Yes No Yes
Lognormal Low Low Yes No No

and

1 2 +  e3** -  3eaz

2 2eaz y /e4oz — 6e2<7z +  8effz — 3

Tian (1993) also builds and tests this model. See Easton (1996) for a note on the test 

results.

4.3.5 Model Comparisons

Table 4.6 compares the models we have covered in Standard Accuracy, Percentage 

Accuracy, stability, robustness, and simplicity. The Log-TVansform Model has the 

most pricing accuracy and is the only model that is unconditionally stable, robust, 

and simple.

4.4 Testing

To gain insight into how these new lattices would perform with complex real op­

tions, a  comprehensive test was designed that tests lattices on options over a wide 

range of parameters. There were 320 American and 320 European put options valued
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by BI, TRI, Quadrinomial, Equal-Spacing Quadrinomial, Equal-Spacing Quintinom­

ial, Equal-Probability TVinomial, Equal-Probability Quadrinomial, Equal-Probability 

Quintinomial, CRR Lattice with an expected growth rate of 0.15, CRR Lattice with 

an expected growth rate of 0.5, Alternative Log-TVansform Binomial Lattice, and 

Multiplicative Binomial Lattice. The Quintinomial Lattice was excluded since it is 

difficult to use and since the Quadrinomial performed poorly; the Lognormal Model 

was excluded because of errors in calculating exponents correctly. In addition, for a 

benchmark, the European options were priced using an analytical approximation of 

the Black-Scholes formula, which is accurate to about six decimal points (Luenberger 

1998a, p. 378). The starting value of the underlying variable was always 100 and the 

other parameter values were from the following set:

i/Zq 6 {0,0.05,0.1,0.15} 

az  6 {0.1,0.4,0.7,1}

T  6 {0.01,0.1,1,10}

K  e  {70,80,100,130,170};

where T  is the option’s time length and K  is the strike price. Every combination of 

these parameters’ values were used as one of the 320 options (4 x 4 x 4 x 5  =  320). After 

finding the value of the options, we calculated the average error (AVE), average ab­

solute error (AAE), average squared error (ASE), maximum absolute error (MAXE), 

average percentage error (%AVE), average absolute percentage error (%AAE), av­

erage squared percentage error (%ASE), and maximum absolute percentage error 

(%MAXE). Because the statistics based on percentage errors are unstable for small
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Table 4.7: Time Steps per Nodes Comparisons
1,000,000

Nodes
10,400
Nodes

1000
Nodes

239
Nodes

BI 1413 143 43 20
TRI 999 101 31 14
Equal-Probability TVinomial 999 101 31 14
Equal-Spacing Quadrinomial 816 82 25 12
Equal-Probability Quadrinomial 816 82 25 12
Equal-Spacing Quintinomial 700 71 22 10
Equal-Probability Quintinomial 700 71 22 10
Quadrinomial 143 30 13 7
Quintinomial 113 24 10 6

values, the options that had a Black-Scholes value of less than 0.01 were thrown out 

when calculating percentage errors. There were 270 options remaining.

The computational time for American options was proportional to the total num­

ber of nodes in the lattice at about 3.7 x 10“5 seconds per node (VBA for Excel, 

266MHz Pentium II, 64MB RAM). Because of computer memory constraints, lattices 

with more than one-million nodes slowed the calculation time considerably. The un­

equal spacing lattices took about 25% longer than other lattices and reached memory 

capacity sooner. The number of nodes used for testing were 1,000,000; 10,400; 1,000; 

and 239. These numbers of nodes are approximately the number of nodes needed 

for the Quadruple, Triple, Double, and BI to take twenty time steps (see ch. 5 for 

multiple lattices). For each of these numbers of nodes, the number of time steps each 

Log-TVansform lattice makes is shown in table 4.7.

Exploratory tests showed that the BI has the greatest Standard Accuracy and 

that the TRI has the greatest Percentage Accuracy for American options. Therefore,
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we will use the BI with one-million nodes as our benchmark for errors and the TRI 

with one-million nodes as our benchmark for percentage errors for American options. 

All TRI American option values less than 0.01 were thrown away for percentage error 

statistics. There were 265 options left. Figure 4.1 compares all twelve tested lattice 

types at 239 nodes. Based on the test results, the BI should be the lattice that is 

most commonly used and the TRI should be the lattice that is used for options with 

extreme strike prices. Notice that the Equal-Probability Trinomial and Equal-Spacing 

Quadrinomial are ranked among the top four lattices with respect to both Standard 

Accuracy and Percentage Accuracy.

Figure 4.2 shows the test results of the BI and TRI with approximately one-million 

nodes versus the Black-Scholes approximation for European options. Neither the BI 

nor the TRI was ever off by more than 0.009 or by more than 0.54% in option value. 

Figure 4.3 shows a comparison of the BI and TRI with approximately one-million 

nodes for American options. The difference in option values between the two lattice 

types never varies by more than 0.012 or by more than 0.14%. The pricing accuracy 

of the one-million node BI and TRI for both European and American options adds 

confidence to our use of the one-million node BI and TRI as benchmarks for American 

options.

Figure 4.4 compares the BI and TRI to the CRR Lattice with 239 nodes. Although 

a 239 node binomial lattice is not computationally expensive, a Quadruple lattice 

with the same number of time steps (twenty) contains one-million nodes. The BI 

dominates the TRI in average squared error with 0.05 versus 0.69, while the TRI 

dominates the BI in average squared percentage error with 24.58 versus 89.29. Notice 

that the pricing accuracy of the CRR Lattice varies widely with the absolute expected
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Figure 4.1: Lattice comparisons with 239 nodes.
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Figure 4.2: BI and TRI with one-million nodes versus Black-Scholes.
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Figure 4.3: American BI and TRI differences with one-million nodes.
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Figure 4.4: BI, TRI, and CRR Lattice with 239 nodes.
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growth rate of the underlying variable. The CRR Lattice performs best at about a 

five percent absolute expected growth rate. As the absolute expected growth rate 

increases to 50%, the pricing accuracy of the CRR Lattice quickly diminishes resulting 

in an average squared error that is over 500 times higher than the BI and an average 

squared percentage error that is over 600,000 times higher than the TRI.

Figure 4.5 gives us a more detailed look at the accuracies of the BI and TRI with 

239 nodes. On average, the BI and TRI undervalue options.

Figure 4.6 shows the rate of descent in average squared error and average squared 

percentage error of both the BI and TRI for the American options as we remove 

variables or increase the number of nodes in our lattices. The average squared error 

of the one-million node lattice was calculated with European options because of the 

lack of a more accurate benchmark for American options.
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Figure 4.5: BI and TRI with 239 nodes.
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Figure 4.6: Convergence of BI and TRI in average squared error.
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Chapter 5 

M ultiple Lattices

The CRR has been extended to multiple lattices (Luenberger 1998b; Kamrad and 

Ritchken 1991; He 1990; Madan, Milne, and Shefrin 1989; Boyle, Evnine, and Gibbs 

1989; Boyle 1988), which are lattices that contain multiple variables. Other multiple 

lattice types have been constructed as well (Rubinstein 1994; Breen 1991; Omberg 

1987; Hull 1993, pp. 428-9). Ekvall (1996) builds superior multiple binomial lattices 

by combining several BI lattices. He equates the risk-neutral probabilities and trans­

forms the underlying variables so that they are independent. Finding the moves is 

complex and requires that a variance-covariance matrix be factorized and that the fac­

tors be inverted. For more information on financial numerical methods, see Trigeorgis 

(1996); Duffie (1996); and Hull (1993).

To make simple and intuitive multivariate approximations, we approximate each 

variable’s distribution separately and then combine them. Thus, the sizes of the moves 

for the multiple lattices are the same as for the single lattices. The joint probabilities 

are found by matching the probabilities found separately and the mixed moments 

(moments containing more than one variable). We define the (fc^. . .  , ki) moment as

84
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E ( r i L  . The wth moment has Yli=i k  — w an<i  mixed moments have fcj > 0 

and kj > 0 for some i  ^  j .

We assume that the logarithms of the underlying assets have a joint multivariate 

Normal distribution. This assumption simplifies our analysis so that we only need 

the means, variances, and correlations of the distributions to determine completely 

the joint distribution.

5.1 Fixed Move Method

In this section, we build multiple lattices by combining several BI lattices and then 

build other double lattices by combining the BI and trinomial lattices.

5.1.1 Double

We make a Double BI (Double) by putting together two BI lattices (see ch. 4). This 

lattice matches all of the third moments, is simple, and is unconditionally stable. 

Assume we have two underlying variables, A  and B, with correlation Pa ,b - Variable 

A  has risk-neutral probability q* of an up move and risk-neutral probability q£ of a 

down move. The lattice assumes that ln(A) moves up by ua  or down by d** We define 

the probabilities of the double lattice by double indexing, where the first index refers 

to A  and the second to B; for example, qUXL is the risk-neutral probability of both 

A  and B  moving up. We can match the probabilities and the first mixed moment,
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£(>15), by solving the following set of equations:

Qu =  9uu "b Qxtd 

Qd =  Qdu +  Qdd 

9u =  9uu -b Qdu

E(AB) =  qUuuAu B +  quduAd-B +  Qdu^A^B +  ^dd^A^B- 

The risk-neutral probabilities are

_ _  .  _  1 +  P a ,b
9uu — Qdd — .

and

_ _  _ _  1 ~  PA,B
Qud — Qdu — ^

5.1.2 Other Multiple BI Lattices

Except for the Double lattice, Fixed-Move Multiple BI lattices are unstable for some 

correlation values. The Triple BI (Triple) is an example, although the results are 

simple for most correlation values. Assuming we have underlying variables, A , 5 ,
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and C, the risk-neutral probabilities for the Triple are

   1 +  P a ,b  +  P b ,c  +  P a ,c
9uuu — Q ddd---------------------g

   1 -  P a ,b  ~  P b ,c  +  P a ,c
Qudu — Qdud — g

1 +  PA,B ~  PB,C ~  PA,C 
Quad — Qddu — g

  I  ~  PA,B  +  PB,C ~  PA,C
Qudd — Qduu — g

If any of the risk-neutral probabilities do not fall between 0 and 1, however, we use 

the Fixed Probability Method to build the lattice (see sec. 5.2).

An example of a Quadruple BI (Quadruple) risk-neutral probability is

_  1 +  P a ,b  +  P b ,c  +  P c ,d  +  P a ,c  +  P a ,d  +  P b ,d  +  Af
Quuuu — Jg )

where

M  =  P a ,d P b ,c  +  P a ,c P b ,d  +  Pa ,b Pc ,d -

In general, we find the Quadruple risk-neutral probabilities by following a pattern. 

Start with the number 1, and for each pair of variables that moves in the same 

direction, add their correlation coefficient. For each pair of variables that moves 

in the opposite direction, subtract their correlation coefficient. If there is an even 

number of up movements, add M ; if there is an odd number, subtract M . Divide the 

whole by 16.

Table 5.1 compares the Multiple BI Lattices up to the Quintuple BI (Quintuple) 

by the number of moments matched, the order of the number of nodes per time step,
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Table 5.1: Multiple BI Lattices

88

Moments
Matched

Order of Nodes 
Per Time Step

Time Steps 
in 1M Nodes

Mixed Moments 
Beyond Third

Double 7 C
O 143 None

Triple 13 n4/ 4 43 None
Quadruple 23 n5/ 5 20 E (ABCD)
Quintuple 41 n6/ 6 12 Many

the number of time steps in one-million nodes, and the mixed moments matched 

beyond the third moment.

5.1.3 Other Double Lattice Types

We are not limited to constructing multiple lattices from only BI lattices. It is 

difficult to pinpoint the best multiple lattice to use in a given situation but our test 

results of single lattices help. There are several important things in choosing an 

appropriate lattice: the region of the optimal exercise point; the correlation between 

the underlying variables; and the importance of each variable in the value of the 

option.

The single lattice test results tell us that to increase pricing accuracies for options 

with outlying exercise points, we should use the TRI;.for other options, we should use 

the BI. If one variable is significantly more important in accurately valuing the option 

than the other variable, we should consider using a double lattice that is a  combination 

of a higher-order lattice and a lower-order lattice. Therefore, we construct double 

lattices out of a TRI and BI (T>i /  Bi), two TRI lattices (Double TVi), two TRI 

lattices with quu = qdd = 0 or q-ud — qju = 0 (Correlated Tri), and an Equal-Probability 

TVinomial and BI (Eq-TVi /  Bi). The risk-neutral probabilities and stable regions of
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Table 5.2: Other Double Lattices

89

Stable qum* = q<hn*
Region quu =  q ^  qU(i =  q^u ?mu ~  qmd qmm *

TH /  Bi 
Double TH*

\p\ <  V3/3 
Ip! <  1/2

l+V3p
(p+\)\l+l/2)

18

1—V3p
(p—l)̂ P—1/2) 

18 (1
1/3

-  p2)/ 9 (4 +  2p2)/9
Corr Tri* p >  1/2 p/6 0 (1 - p )/6 (l +  p)/3
Corr TH* P < -1 /2 0 - p /6 (1 + P)/6 (1 -  P)/ 3
Eq-TH /  Bi \p\ <  Ve/3 2+-\/6p  

12
2 - y / 6 p  

12 1/6

* Risk-neutral probabilities marked with a '*’ are only valid for similarly marked 
lattices.

Table 5.3: Double Lattice Comparisons
Moments
Matched

Order of Nodes 
Per Time Step

Time Steps 
in 1M Nodes

Mixed Moments 
Beyond Third

TVi /  Bi 10 2n3/3 114 None
Eq-TH /  Bi 9 2n3/3 114 None
Double TH 14 4n3/3 90 E(A2B 2)
Correlated TH 13 n3 99 None

these four double lattice types, which each match at least all the third moments, are 

listed in table 5.2.

For each of these double lattice types, table 5.3 shows the same comparisons that 

are in table 5.1. Table 5.4 shows the asymptotic comparisons of all the double lattice 

types. Table 5.5 shows which double lattices are likely to be the most accurate when 

the importance of the variables is similar or unequal, when the absolute correlation 

is high or low, and when the optimal exercise points are at the edges of the variables’ 

distributions or not. Note that the Double is always the simplest, most often the 

most accurate, and handles most problems well.
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Table 5.4: Asymptotic Comparisons
Time
Steps

End
Nodes

Average
Spacing

Total
Range

Double v̂ 3 z \ f i z 2 ^64 /32 2yfZz
TVi /  Bi S/Zz/2

|C4**
loo
[r—♦ ^ 18 /z , y  128/32 2y/Z \z/2 ,2y/Zz/2

Eq-Tri /  Bi y/Zz/2 y/IZz2 ^9/42, y/128/Zz 2^/812/16,2 S/Zz/2
Double Tri y/Zz/A y/ZQz2 y/Z6/z 2^812 /4
Correlated TVi r * </2122 y/27/z Z&Z

Note: z  is the number of nodes in the lattice.

Table 5.5: Double Lattice Regions
Importance
Weighting

Absolute
Correlation

None at 
the Edge

One at 
the Edge

Both at 
the Edge

Similar Low Double T r i /B i Double Tri
Similar High Double Correlated TVi Correlated Tri
Unequal Low Eq-Tri /  Bi T K /B i Double Tri
Unequal High Double Correlated TVi Correlated Tri
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5.2 Fixed Probability Method

The Fixed Probability Method is more complex than the Fixed Move Method, but is 

stable for any number of variables and appears to be more consistently accurate.

5.2.1 Ekvall’s Transformation

The transformation we outline here is derived from Ekvall (1996). Begin with N  

observables that follow a process:

d ln(Zfc) =  uZkQdt +  <rZkdBk for k  =  1, . . .  , N;

where Bfc is a risk-neutral Brownian motion, vZkq is the risk-neutral expected growth 

rate of observable Zk, and aZk is the volatility of observable Z*. Let d ln(Z) represent 

the vector of observables,

dln(Z) =  [dln(Zi) dln(Z2) . . .  dln(ZA,)]T,

where T  is transpose. Assume that the above processes have an JV-variate Normal 

distribution, N^r:

dln(Z) ~  NN{uzQdt,Slz dt),
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where uZq is the vector of risk-neutral expected growth rates and Qz is the variance- 

covariance matrix of the Normal Distribution,

<

JS
JM & ZiVz2PZi,Z2 ......................

n z  =
GZiCZtPZuZi 4 a ......................

........................

Our goal is to transform the observables, dln(Z), so that the variance-covariance 

matrix is the identity matrix, I. The variance-covariance matrix can be factorized into 

f lz  =  K K t , where K  is a lower triangular matrix (Ekvall 1996). The transformed 

variables are dln(Y ) =  K’~1dln(Z). Then we see that the vector of risk-neutral 

expected growth rates of the transformed variables is uyQ =  K ~ xu Zq and that the 

transformed variance-covariance matrix is

n y =  K ~ l ( K K T)(K ~ l)T =  I.

5.2.2 Transformed Lattices

We can easily build multiple lattices out of combinations of the BI and trinomial 

lattices. These multiple lattices include new lattices like the Triple Tri and lattices 

that we built in the previous sections (e.g., Double, Double Tri, Bi/Tri, Triple). 

We first approximate the movements of the transformed variables. For example, a 

Multiple BI is approximated as

A ln( Y )  =  K ~ lu ZqA t +  ± y /A t;
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where

±  =  [±1 ± 2 • • • ±Ar]T

represents the vector of plus or minus signs that depend upon the possible up or down 

moves of the N  transformed variables, At  = T /n  is the length of the time step, T  is 

the time length of the option, and n is the number of time steps. (For a trinomial 

lattice, ±  represents the vector of plus signs, minus signs, or no sign that depend 

upon the possible up, down, or middle moves. And, the size of the changes is \/3 

larger than the BI.) We can see the movements of Z  by multiplying through by K :

A ln(Z) =  v Zq A t + K ± V A t .

For example, a Double lattice has probability of any move equal to 1/4. The 

moves of ln(Zi) are

A ln(Zi) =  vziq At ± i cZl \/a£ , (5.1)

and the moves of ln(Z2) are

A in (Z2) =  t/Z2QAt  +  [±iPzltza ±2 0 -  ~  Pzx,z2 o'z2'/& t, (5.2)

where ± i  is positive if Yi moves up and negative if Yi moves down. A Double TH
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lattice has probabilities:

Quu ~  Qdd ~  Qttd ~ Qdu ~  1/36 

Qmm ~  4/9 

Qmu — Qmd =  9um =  Qdm = 1/9.

The moves are

Aln(Zi) =  vZlQA t ± i aZl V3At

and

A in(Z2) = uZjQA t  +  \± ip zuz2 ±2 \J  1 - Pzuz% ^ V S A t,

where ±1 is positive if Y\ moves up, is negative if Y\ moves down, and has no sign if 

Vj moves middle.

5.3 Factor Model Lattices

The relationship between observables may be determined to emanate from random 

quantities called factors. A factor model is constructed to show these relationships 

(see, e.g., Luenberger (1998a, pp. 198-207)). Suppose we have j  mutually-independent 

factors, f i , . . . ,  fj, that follow a process:

d ln(/») =  vfidt + (rfidBfi for i  =  1, . . .  , j;
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where is a Brownian motion. Also suppose that there are N  observables, Z u . . .  , Zw, 

that follow a process:

d ln(Zfc) =  uZkdt +  oZkdBk =  akdt +  ^  bk>i d ln(/j) for k =  1, . . .  , N]
i=  1

where bk<i represents the sensitivity of the fcth observable to the zth factor and ak 

is a constant. Notice that the factor model is consistent with our assumption that 

the returns of the observables have a multivariate Normal distribution. Let d ln Z  

represent the vector of observables,

d In Z  = adt + 6d In / ,

where din /  is the /-dimensional vector of factors, a  is the iV-dimensional vector of 

constants, and b is the N  x j  matrix,

&1.2 .............

b =
&2.1 &2 ,2 .............

. . .  . . .  bNJ

To use the factors for pricing, we must find the risk-neutral growth rates of the 

factors. Assume that f \  is correlated with the Market portfolio (no more than one 

factor can be correlated with the Market portfolio since the factors are independent). 

The expected growth rate of f \  can be transformed into the risk-neutral expected 

growth rate, Uf1Q, using G-3(3.11). For all other factors, the risk-neutral expected 

growth rate is equal to the expected growth rate.
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W ith the factor model in place, we can easily build multiple lattices out of com­

binations of the BI and trinomial lattices by approximating the movements of the 

factors. For example, a Multiple BI is approximated as

A In /  =  UfQ A t + ±.VAt;

where ±  represents the vector of signs that depend upon the possible moves of the j  

factors. The movements of the observables are then

A l n Z  =  (a  +  6i//Q)At +  6±-s/At.

For example, a Double lattice has probability of any move equal to 1/4. The 

moves of ln(Zi) are

Aln(Zi) = (ai +  6i,i^/iq +  b\'2 i/fJQ)A t -I- (ii&ijO/j ±2

and the moves of ln(Z2) are

Aln(Z2) =  (a2 +  +  ^2 ,2 uI j q ) ^  +  (±i&2,iO'/i ^2 62,2̂

where ±1 is positive if factor f \  moves up and negative if f i  moves down.

If the number of factors exceeds the number of observables by more than one or 

two, or if it is difficult to find the factors, use the Fixed Move Method or the Fixed 

Probability Method to build the lattice.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 5. MULTIPLE LATTICES 97

5.4 Application —  Internet Advertising Space

A large software company wishes to explore the possibility of advertising on a hot 

website. The company’s advertising experts predict that this website will attract 

software sales s a t a rate of

dln(s) =  .25d£ +  .5dBs,

with initial value of s(0) = 3000 per year and ps>M = .3. These advertisements require 

administration costs c at a rate of

d ln(c) =  .25dBc,

with initial value of c(0) =  $3 million per year, pc,M =  1) and pc,s =  .5. The price 

of the software is $1000. The company’s financial experts predict that the Market 

portfolio follows the process:

dln(Af) =  .14dt +  .3dBA/;

and that the risk-free rate is constant at 0.05. Find the value to the company of a 

one-year lease of this advertising space. The space can be forfeited without cost but 

once forfeited, the space cannot be reclaimed.
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Table 5.6: Costs and Sales Moves
up,up up,down down,up down,down

ln(c) 0.02489 0.02489 -.02511 -.02511
ln(s) 0.07013 -.01648 0.02013 -.06648

FYom G-3(3.11), the risk-neutral growth rate of c is

=  0 -  +  .045 -  .05) =  -.01125.
tO

The risk-neutral growth rate of s is found similarly as 0.1825. We break this continu­

ous model into 100 time periods, use Ekvall’s transformation, and then approximate 

with a Double lattice. FYom (5.1),

A  ln(c) =  uCQ A t  crcv/At

=  —0U25 ( - j ig )  ± i .25 ( i )  ,

and from (5.2),

Aln(s) =  uaqA t +  [±ipc,j ±2 y jl  ~  f%,s\ <^s^At

The moves of ln(c) and ln(s) are found in table 5.6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 5. MULTIPLE LATTICES 99

Figure 5.1: The problem structure.

The value of the lease at time t  is:

{max[(1000s — c)/100,0] for t =  100

max{(1000s -  c)/100 +  e-°°“ E[V(t +  1)], 0} for t =  0 , . . .  , 99;

where E[V(t +  1)] is the risk-neutral expectation of the value of the lease in the 

next time period. We calculate the value of the lease with dynamic progromming as 

$587,768. Figure 5.1 represents the possible costs and sales over time. It also shows 

the four possible moves that can be made from a node at time 99.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Bibliography

Amram, M. and N. Kulatilaka (1999). Real Options : Managing Strategic Invest­

ment in an Uncertain World. Financial Management Association Survey and 

Synthesis Series. Boston, MA: Harvard Business School Press.

Billingsley, P. (1995). Probability and Measure (3d ed.). Wiley Series in Probability 

and Mathematical Statistics. New York: John Wiley.

Boyle, P. P. (1988, March). A lattice framework for option pricing with two state 

variables. Journal of Financial and Quantitative Analysis 23(1), 1-12.

Boyle, P. P., J. Evnine, and S. Gibbs (1989). Numerical evaluation of multivariate 

contingent claims. Review of Financial Studies 2(2), 241-50.

Breen, R. (1991, June). The accelerated binomial option pricing model. Journal of 

Financial and Quantitative Analysis 26(2), 153-64.

Brennan, M. J. and E. S. Schwartz (1985, April). Evaluating natural resource 

investments. Journal of Business 58(2), 135-57.

Cox, J. C., S. A. Ross, and M. Rubinstein (1979, July). Option pricing: A simplified 

approach. Journal of Financial Economics 7, 229-63.

Dixit, A. K. and R. S. Pindyck (1994). Investment Under Uncertainty. Princeton,

100

Reproduced with permission o f the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

BIBLIOGRAPHY 101

NJ: Princeton.

Duffie, D. (1988). Securities Markets. Economic Theory, Econometrics, and Math­

ematical Economics. San Diego, CA: Academic Press.

Duffie, D. (1996). Dynamic Asset Pricing Theory (2d ed.). Economic Theory, 

Econometrics, and Mathematical Economics. Princeton, NJ: Princeton.

Easton, S. A. (1996). A note on modified lattice approaches to option pricing. The 

Journal of Futures Markets 16(5), 585-94.

Ekvall, N. (1996, June 7). A lattice approach for pricing of multivariate contingent 

claims. European Journal of Operational Research 91(2), 214-28.

Gelman, A., J. B. Carlin, H. S. Stem, and D. B. Rubin (1995). Bayesian Data 

Analysis (1st ed.). London: Chapman & Hall.

Geske, R. and K. Shastri (1985, March). Valuation by approximation: A com­

parison of alternative option valuation techniques. Journal of Financial and 

Quantitative Analysis 20(1), 45-71.

He, H. (1990). Convergence from discrete- to continuous-time contingent claims 

prices. Review of Financial Studies 5(4), 523-46.

Huang, C. and R. H. Litzenberger (1988). Foundations for Financial Economics. 

Englewood Cliffs, NJ: Prentice-Hall.

Hull, J. C. (1993). Options, Futures, and Other Derivative Securities (2d ed.). 

Englewood Cliffs, NJ: Prentice Hall.

Jarrow, R. A. and A. Rudd (1983). Option Pricing. Homewood, IL: Richard D. 

Irwin.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

BIBLIOGRAPHY 102

Johnson, N. L. and S. Kotz (1969-1972). Distributions in Statistics. Wiley Series 

in Probability and Mathematical Statistics. New York: John Wiley. 4 vols.

Kamrad, B. and P. Ritchken (1991, December). Multinomial approximating models 

for options with k state variables. Management Science 37(12), 1640-52.

Kasanen, E. (1993, Autumn). Creating value by spawning investment opportuni­

ties. Financial Management 22(3), 251-8.

Kushner, H. J. and P. G. Dupuis (1992). Numerical Methods for Stochastic Con­

trol Problems in Continuous Time. Applications of Mathematics. New York: 

Springer-Verlag.

Law, A. M. and W. D. Kelton (n.d.). Simulation Modeling and Analysis (2d ed.). 

McGraw-Hill Series in Industrial Engineering and Management Science. New 

York: McGraw-Hill.

Luenberger, D. G. (1998a). Investment Science. New York: Oxford University 

Press.

Luenberger, D. G. (1998b). Products of trees for investment analysis. Journal of 

Economic Dynamics and Control 22, 1403-17.

Luenberger, D. G. (1999, October). Projection pricing. Submitted for publication.

Luenberger, D. G. (2000, March). A correlation pricing formula. In preparation.

Madan, D. B., F. Milne, and H. Shefrin (1989). The multinomial option pricing 

model and its Brownian and Poisson limits. Review of Financial Studies 2(2), 

251-65.

McDonald, R. and D. Siegel (1984, March). Option pricing when the underlying as­

set earns a below-equilibrium rate of return: A note. Journal of Finance 39(1),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

BIBLIOGRAPHY 103

261-5.

McDonald, R. and D. Siegel (1985, June). Investment and the valuation of firms 

when there is an option to shut down. International Economic Review 26 (2), 

331-49.

Nawalkha, S. K. and D. R. Chambers (1995, August). The binomial model and 

risk neutrality: Some important details. The Financial Review 30(2), 605-15.

Oksendal, B. (1995). Stochastic Differential Equations (4th ed.). New York: 

Springer.

Omberg, E. (1987, June). A note on the convergence of binomial-pricing and 

compound-option models. Journal of Finance ^2(2), 463-9.

Omberg, E. (1988, June). Efficient discrete time jump process models in option 

pricing. Journal of Financial and Quantitative Analysis 23(2), 161-74.

Paddock, J. L., D. R. Siegel, and J. L. Smith (1988, August). Option valuation 

of claims on real assets: The case of offshore petroleum leases. The Quarterly 

Journal of Economics 103 (3), 479-508.

Rubinstein, M. (1994, November). Return to Oz. Risk 7(11), 67-71.

Smith, J. E. (1990, June). Moment Methods for Decision Analysis. Ph. D. thesis, 

Stanford University.

Tian, Y. (1993). A modified lattice approach to option pricing. The Journal of 

Futures Markets 13(5), 563-77.

Trigeorgis, L. (1991, September). A log-transformed binomial numerical analysis 

method for valuing complex multi-option investments. Journal of Financial and 

Quantitative Analysis 26(2), 309-26.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

BIBLIOGRAPHY 104

Trigeorgis, L. (1993a, March). The nature of option interactions and the valuation 

of investments with multiple real options. Journal of Financial and Quantitative 

Analysis 28(1), 1-20.

Trigeorgis, L. (1993b, Autumn). Real options and interactions with financial flexi­

bility. Financial Management 22(3), 202-24.

Trigeorgis, L. (Ed.) (1995). Real Options in Capital Investment: Models, Strategies, 

and Applications. Westport, CT: Praeger Publishers.

TVigeorgis, L. (1996). Real Options: Managerial Flexibility and Strategy in Resource 

Allocation. Cambridge: MIT Press.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


